DOI QR코드

DOI QR Code

Biosynthesis of Glycosylated Derivatives of Tylosin in Streptomyces venezuelae

  • Han, Ah-Reum (Interdisciplinary Programs of Bioengineering, Seoul National University) ;
  • Park, Sung-Ryeol (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Je-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Eun-Yeol (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Kim, Dong-Myung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Byung-Gee (Interdisciplinary Programs of Bioengineering, Seoul National University) ;
  • Yoon, Yeo-Joon (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2011.03.02
  • Accepted : 2011.03.23
  • Published : 2011.06.28

Abstract

Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl-D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl-D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

Keywords

References

  1. Borisova, S. A., L. Zhao, D. H. Sherman, and H. W. Liu. 1999. Biosynthesis of desosamine: Construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1: 133- 136. https://doi.org/10.1021/ol9906007
  2. Borisova, S. A., C. Zhang, H. Takahashi, H. Zhang, A. W. Wong, J. S. Thorson, and H. W. Liu. 2006. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: Opportunities, limitations, and mechanistic hypotheses. Angew Chem. Int. Ed. Engl. 45: 2748-2753. https://doi.org/10.1002/anie.200503195
  3. Chu, D. T. 1999. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med. Res. Rev. 19: 497-520. https://doi.org/10.1002/(SICI)1098-1128(199911)19:6<497::AID-MED3>3.0.CO;2-R
  4. Corcoran, J. W., M. L. Huber, and F. M. Huber. 1977. Relationship of ribosomal binding and antibacterial properties of tylosin-type antibiotics. J. Antibiot. (Tokyo) 30: 1012-1014. https://doi.org/10.7164/antibiotics.30.1012
  5. Hong, J. S. J., S. H. Park, C. Y. Choi, J. K. Sohng, and Y. J. Yoon. 2004. New olivosyl derivatives of methymycin/pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol. Lett. 238: 291-299. https://doi.org/10.1111/j.1574-6968.2004.tb09769.x
  6. Jung, W. S., A. R. Han, J. S. J. Hong, S. R. Park, C. Y. Choi, J. W. Park, and Y. J. Yoon. 2007. Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 76: 1373-1381. https://doi.org/10.1007/s00253-007-1101-y
  7. Langenhan, J. M., B. R. Griffith, and J. S. Thorson. 2005. Neoglycorandomization and chemoenzymatic glycorandomization: Two complementary tools for natural product diversification. J. Nat. Prod. 68: 1696-1711. https://doi.org/10.1021/np0502084
  8. Lee, S. K., J. W. Park , J. W. Kim, W. S. Jung, S. R. Park, C. Y. Choi, et al. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Nat. Prod. 69: 847-849. https://doi.org/10.1021/np060026p
  9. O'Hagan, D. 1991. The Polyketide Metabolites. Ellis Horwood, Chichester.
  10. Park, S. R., A. R. Han, Y. H. Ban, Y. J. Yoo, E. J. Kim, and Y. J. Yoon. 2010. Genetic engineering of macrolide biosynthesis: Past advances, current state, and future prospects. Appl. Microbiol. Biotechnol. 85: 1227-1239. https://doi.org/10.1007/s00253-009-2326-8
  11. Rodríguez, L., I. Aguirrezabalaga, N. Allende, A. F. Braña, C. Méndez, and J. A. Salas. 2002. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. Chem. Biol. 9: 721-729. https://doi.org/10.1016/S1074-5521(02)00154-0
  12. Salas, J. A. and C. Méndez. 2007. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219-232. https://doi.org/10.1016/j.tim.2007.03.004
  13. Toshima, K. 2006. Novel glycosylation methods and their application to natural products synthesis. Carbohydr. Res. 341: 1282-1297. https://doi.org/10.1016/j.carres.2006.03.012
  14. Yoon, Y. J., J. B. Beck, B. S. Kim, H. Y. Kang, K. A. Reynolds, and D. H. Sherman. 2002. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9: 203-214. https://doi.org/10.1016/S1074-5521(02)00095-9
  15. Zhao, L., N. L. S. Que, Y. Xue, D. H. Sherman, and H. W. Liu. 1998. Mechanistic studies of desosamine biosynthesis: C-4 deoxygenation precedes C-3 transamination. J. Am. Soc. Chem. 120: 12159-12160. https://doi.org/10.1021/ja982942y

Cited by

  1. Recent biotechnological progress in enzymatic synthesis of glycosides vol.40, pp.12, 2011, https://doi.org/10.1007/s10295-013-1332-0
  2. Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli vol.1, pp.4, 2011, https://doi.org/10.1126/sciadv.1500077