DOI QR코드

DOI QR Code

A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases

  • Sarafeddinov, Alla (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt) ;
  • Arif, Atia (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt) ;
  • Peters, Anna (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt) ;
  • Fuchsbauer, Hans-Lothar (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt)
  • Received : 2010.12.06
  • Accepted : 2011.03.25
  • Published : 2011.06.28

Abstract

Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at $42^{\circ}C$, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the $28^{\circ}C$ culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower $K_i$ (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.

Keywords

References

  1. Ando, H., M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, and M. Motoki. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617. https://doi.org/10.1271/bbb1961.53.2613
  2. Bah, S., B. S. Paulsen, D. Diallo, and H. T. Johansen. 2006. Characterization of cysteine proteases in Malian medicinal plants. J. Ethnopharmacol. 107: 189-198. https://doi.org/10.1016/j.jep.2006.03.008
  3. Bentley, S. D., K. F. Chater, A. M. Cerdano-Tarragena, G. L. Challis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  4. Blackman, M. J. 2008. Malarial proteases and host cell egress: An 'emerging' cascade. Cell. Microbiol. 10: 1925-1934. https://doi.org/10.1111/j.1462-5822.2008.01176.x
  5. Brömme, D., F. S. Nallaseth, and B. Turk. 2004. Production and activation of recombinant papain-like cysteine proteases. Methods 32: 199-206. https://doi.org/10.1016/S1046-2023(03)00212-3
  6. Candela, T. and A. Fouet. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098. https://doi.org/10.1111/j.1365-2958.2006.05179.x
  7. Chater, K. F., S. Biró, K. J. Lee, T. Palmer, and H. Schrempf. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34: 171-198. https://doi.org/10.1111/j.1574-6976.2009.00206.x
  8. Claessen, D., I. Stokroos, H. J. Deelstra, N. A. Penninga, C. Bormann, J. A. Salas, L. Dijkhuizen, and H. A. B. Wösten. 2004. The formation of the rodlet layer of Streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53: 433-443. https://doi.org/10.1111/j.1365-2958.2004.04143.x
  9. De Jong, W., H. A. B. Wosten, L. Dijkhuizen, and D. Claessen. 2009. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73: 1128-1140. https://doi.org/10.1111/j.1365-2958.2009.06838.x
  10. Devaraj, S. G., N. Wang, Z. Chen, Z. Chen, M. Tseng, N. Barretto, et al. 2007. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282: 32208-32221. https://doi.org/10.1074/jbc.M704870200
  11. Di Berardo, C., D. S. Capstick, M. J. Bibb, K. C. Findlay, M. J. Buttner, and M. A. Elliot. 2008. Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J. Bacteriol. 190: 5879-5889. https://doi.org/10.1128/JB.00685-08
  12. Elliot, M. A., N. Karoonuthaisiri, J. Huang, M. J. Bibb, S. N. Cohen, C. M. Cao, and M. J. Buttner. 2003. The chaplins: A family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17: 1727-1740. https://doi.org/10.1101/gad.264403
  13. Friedkin, M., L. T. Plante, E. J. Crawford, and M. Crumm. 1975. Inhibition of thymidylate synthetase and dihydrofolate reductase by naturally occurring oligoglutamate derivatives of folic acid. J. Biol. Chem. 250: 5614-5621.
  14. Gerber, U., U. Jucknischke, S. Putzien, and H.-L. Fuchsbauer. 1994. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem. J. 299: 825-829. https://doi.org/10.1042/bj2990825
  15. Hiraga, K., T. Suzuki, and K. Oda. 2000. A novel doubleheaded proteinaceous inhibitor for metalloproteinase and serine proteinase. J. Biol. Chem. 275: 25173-25179. https://doi.org/10.1074/jbc.M002623200
  16. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531. https://doi.org/10.1038/nbt820
  17. Kanaji, T., H. Ozaki, T. Takao, H. Kawajiri, H. Ide, M. Motoki, and Y. Shimonishi. 1993. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain S-8112. J. Biol. Chem. 268: 11565-11572.
  18. Kashiwagi, T., K. Yokoyama, K. Ishikawa, K. Ono, D. Ejima, H. Matsui, and E. Suzuki. 2002. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 277: 44252-44260. https://doi.org/10.1074/jbc.M203933200
  19. Koshima, S., M. Terabe, S. Taguchi, H. Momose, and K. Miura. 1994. Primary structure and inhibitory properties of a proteinase inhibitor produced by Streptomyces cacaoi. Biochim. Biophys. Acta 1207: 120-125. https://doi.org/10.1016/0167-4838(94)90060-4
  20. Li, N., P. Yun, M. A. Nadkarni, N. Babapoor Ghadikolaee, K.- A. Nguyen, M. Lee, N. Hunter, and C. A. Collyer. 2010. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis. Mol. Microbiol. 76: 861-873. https://doi.org/10.1111/j.1365-2958.2010.07123.x
  21. Mao, Y. Q., M. Varoglu, and D. H. Sherman. 1999. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem. Biol. 6: 251-263. https://doi.org/10.1016/S1074-5521(99)80040-4
  22. McCormick, J. R. 2009. Cell division is dispensable but not irrelevant in Streptomyces. Curr. Opin. Microbiol. 12: 689-698. https://doi.org/10.1016/j.mib.2009.10.004
  23. Mehta, K. and R. Eckert (eds.). 2005. Transglutaminases. Family of enzymes with diverse functions. In J. R. Bertino (ed.). Progress in Experimental Tumor Research. Karger, Basel, Switzerland.
  24. Nishikawa, M. and K. Kobayashi. 2009. Streptomyces roseoverticillatus produces two different poly(amino acid)s: Lariatshaped $\gamma$-poly(L-glutamic acid) and$\varepsilon$-poly(L-lysine). Microbiology 155: 2988-2993. https://doi.org/10.1099/mic.0.029694-0
  25. Ohnishi, Y., J. Ishikawa, H. Hara, H. Suzuki, M. Ikenoya, H. Ikeda, A. Yamashita, M. Hattori, and S. Horinouchi. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060. https://doi.org/10.1128/JB.00204-08
  26. Osera, C., G. Amati, C. Calvio, and A. Galizzi. 2009. SwrAA activates poly-$\gamma$-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 155: 2282-2287. https://doi.org/10.1099/mic.0.026435-0
  27. Pasternack, R., S. Dorsch, J. T. Otterbach, I. R. Robenek, S. Wolf, and H.-L. Fuchsbauer. 1998. Bacterial pro-transglutaminase from Streptoverticillium mobaraense. Purification, characterisation and sequence of the zymogen. Eur. J. Biochem. 257: 570-576. https://doi.org/10.1046/j.1432-1327.1998.2570570.x
  28. Pfleiderer, C., M. Mainusch, J. Weber, M. Hils, and H.-L. Fuchsbauer. 2005. Inhibition of bacterial transglutaminase by its heat-treated pro-enzyme. Microbiol. Res. 160: 265-271. https://doi.org/10.1016/j.micres.2005.01.001
  29. Santos, C. C., C. Sant'anna, A. Terres, N. L. Chuna-e-Silva, J. Scharfstein, and A. P. de A. Lima. 2005. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J. Cell Sci. 118: 901-915. https://doi.org/10.1242/jcs.01677
  30. Sarafeddinov, A., S. Schmidt, F. Adolf, M. Mainusch, A. Bender, and H.-L. Fuchsbauer. 2009. A novel transglutaminase substrate from Streptomyces mobaraensis triggers autolysis of neutral metalloproteases. Biosci. Biotechnol. Biochem. 73: 993- 999. https://doi.org/10.1271/bbb.80769
  31. Schmidt, S., F. Adolf, and H.-L. Fuchsbauer. 2008. The transglutaminase activating metalloprotease inhibitor from Streptomyces mobaraensis is a glutamine and lysine substrate of the intrinsic transglutaminase. FEBS Lett. 582: 3132-3138. https://doi.org/10.1016/j.febslet.2008.07.049
  32. Schreier, H. J. 1993. Biosynthesis of glutamine and glutamate and the assimilation of ammonia, pp. 281-298. In A. L. Sonenshein, J. A. Hoch, and R. Losick (eds.). Bacillus subtilis and Other Gram-Positive Bacteria. American Society of Microbiology, Washington, DC.
  33. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, et al. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  34. Stanley, N. R. and B. A. Lazazzera. 2005. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol. Microbiol. 57: 1143-1158. https://doi.org/10.1111/j.1365-2958.2005.04746.x
  35. Takayuki, S. and R. A. L. van der Hoorn. 2008. Papain-like cysteine proteases: Key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9: 119- 125.
  36. Uchida, I., S. Makino, C. Sasakawa, M. Yoshikawa, C. Sugimoto, and N. Terakado. 1993. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol. Microbiol. 9: 487-496. https://doi.org/10.1111/j.1365-2958.1993.tb01710.x
  37. Weimer, S., K. Oertel, and H.-L. Fuchsbauer. 2006. A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases. Anal. Biochem. 352: 110-119. https://doi.org/10.1016/j.ab.2006.02.029
  38. Willey, J. M., A. Willems, S. Kodani, and J. R. Nodwell. 2006. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59: 731-742. https://doi.org/10.1111/j.1365-2958.2005.05018.x
  39. Zhang, D., M. Wang, G. Du, Q. Zhao, J. Wu, and J. Chen. 2008. Surfactant protein of the Streptomyces subtilisin inhibitor family inhibits transglutaminase activation in Streptomyces hygroscopicus. J. Agric. Food Chem. 56: 3403-3408. https://doi.org/10.1021/jf703567t
  40. Zotzel, J., P. Keller, and H.-L. Fuchsbauer. 2003. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur. J. Biochem. 270: 3214-3222. https://doi.org/10.1046/j.1432-1033.2003.03703.x
  41. Zotzel, J., R. Pasternack, C. Pelzer, M. Mainusch, and H.-L. Fuchsbauer. 2003. Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155. https://doi.org/10.1046/j.1432-1033.2003.03809.x

Cited by

  1. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences vol.38, pp.3, 2014, https://doi.org/10.1111/1574-6976.12047
  2. Evaluation of sorghum grain hydrolysates and dried distillers grains with solubles for the production of microbial transglutaminase vol.12, pp.2, 2011, https://doi.org/10.1080/19476337.2013.801520
  3. Durch Design verbrückt: ein konformativ eingeschränkter Transglutaminase‐Marker ermöglicht effiziente ortsspezifische Konjugation vol.127, pp.45, 2015, https://doi.org/10.1002/ange.201504851
  4. Locked by Design: A Conformationally Constrained Transglutaminase Tag Enables Efficient Site‐Specific Conjugation vol.54, pp.45, 2011, https://doi.org/10.1002/anie.201504851
  5. Microbial inhibitors of cysteine proteases vol.205, pp.4, 2011, https://doi.org/10.1007/s00430-016-0454-1
  6. Involvement of a Novel Class C Beta-Lactamase in the Transglutaminase Mediated Cross-Linking Cascade of Streptomyces mobaraensis DSM 40847 vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0149145
  7. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins vol.292, pp.38, 2011, https://doi.org/10.1074/jbc.m117.797811
  8. Illuminating structure and acyl donor sites of a physiological transglutaminase substrate fromStreptomyces mobaraensis : Transglutaminase Acyl Donor Interactions vol.27, pp.5, 2011, https://doi.org/10.1002/pro.3388
  9. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase vol.285, pp.24, 2011, https://doi.org/10.1111/febs.14678
  10. Biochemical study of sortase E2 fromStreptomyces mobaraensisand determination of transglutaminase cross‐linking sites vol.593, pp.15, 2011, https://doi.org/10.1002/1873-3468.13466
  11. Decoding the Papain Inhibitor from Streptomyces mobaraensis as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway vol.83, pp.10, 2011, https://doi.org/10.1021/acs.jnatprod.0c00201
  12. Enhanced Production of Transglutaminase in Streptomyces mobaraensis through Random Mutagenesis and Site-Directed Genetic Modification vol.69, pp.10, 2011, https://doi.org/10.1021/acs.jafc.1c00645