DOI QR코드

DOI QR Code

Mass Production of Aphicidal Beauveria bassiana SFB-205 Supernatant with the Parameter of Chitinase

  • Kim, Jae-Su (Entomology Research Laboratory, Plant and Soil Science, University of Vermont) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yu, Yong-Man (Department of Agriculture and Life Science, College of Agriculture and Life Science, Chungnam National University)
  • Received : 2011.01.03
  • Accepted : 2011.03.16
  • Published : 2011.06.28

Abstract

Beauveria bassiana SFB-205 supernatant can effectively control cotton aphid populations, which is closely associated with its chitinase activity. The present work extends to optimizing a culture medium to produce more efficacious supernatant in flask conditions, followed by scale-up in 7 L, 300 L and 1.2 KL fermentors with the parameter of chitinase. In flask conditions, a combination of soluble starch and yeast extract produced the greatest amount of chitinase (5.1 units/ml) and its supernatant had the highest aphicidal activity. An optimal quantitative combination of the two substrates, estimated by a response surface method, enabled the supernatant to have 15.7 units/ml of chitinase activity and 3.7 ml/l of median lethal concentration ($LC_{50}$) of toxicity against cotton aphid adults in laboratory conditions. In the scale-up conditions, overall supernatant had 25-28 units/ml of chitinase activity. Decrease in pH and limitation of dissolved oxygen (DO) during cultures were significantly related to the yield of chitinase. These results suggest that the substrate-dependent chitinase production can be background information for optimizing a culture medium, and pH and DO are critical factors in maximizing the production in scale-up conditions.

Keywords

References

  1. Ahamed, A. and P. Vermette. 2008. Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J. 40: 399-407. https://doi.org/10.1016/j.bej.2007.11.030
  2. Amaral, P. F. F., M. G. Freire, M. H. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho. 2008. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol. Bioeng. 99: 588-598. https://doi.org/10.1002/bit.21640
  3. Andersen, S. O., P. Hojrup, and P. Roepstorff. 1995. Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176. https://doi.org/10.1016/0965-1748(94)00052-J
  4. Burges, H. D. 1998. Formulation of mycopesticides, pp. 131-186. In H. D. Burges (ed.). Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatment. Kluwer Academic Publishers, Dordrecht.
  5. Butt, T. M. and M. S. Goettel. 2000. Bioassay of entomogenous fungi, pp. 141-196. In A. Navon and K. R. S. Ascher. (eds.). Bioassays of Entomopathogenic Microbes and Nematodes. CABI Publishing, Wallingford.
  6. Charnley, A. K. 2003. Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv. Bot. Res. 40: 241-321.
  7. Cliquet, S. and M. A. Jackson. 2005. Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. J. Ind. Microbiol. Biotechnol. 32: 204-210. https://doi.org/10.1007/s10295-005-0232-3
  8. Copping, L. G. 2004. The Manual of Biocontrol Agents, 3rd Ed. BCPC Publications, Hampshire.
  9. Cordon, T. C. and J. H. Schwartz. 1962. The fungus Beauveria tenella. Science 138: 1265-1266. https://doi.org/10.1126/science.138.3546.1265
  10. Couto, S. R., A. Rodríguez, R. R. M. Paterson, N. Lima, and J. A. Teixeira. 2006. Laccase activity from the fungus Trametes hirsute using an air-lift bioreactor. Lett. Appl. Microbiol. 42: 612-616.
  11. Deacon, J. W. 2006. Fungal Biology, 4th Ed. Blackwell Publishing, Oxford.
  12. Domínguez, A., S. R. Couto, and A. Sanromán. 2001. Amelioration of ligninolytic enzyme production by Phanerochaete chrysosporium in airlift bioreactors. Biotechnol. Lett. 23: 451-455. https://doi.org/10.1023/A:1010373102530
  13. Donatti, A. C., L. Furlaneto-Maia, M. H. Fungaro, and M. C. Furlaneto. 2008. Production and regulation of cuticle-degrading proteases from Beauveria bassiana in the presence of Rhammatocerus schistocercoides cuticle. Curr. Microbiol. 56: 256-260. https://doi.org/10.1007/s00284-007-9071-y
  14. Fan, Y., Y. Zhang, X. Yang, X. Pei, S. Guo, and Y. Pei. 2007. Expression of a Beauveria bassiana chitinase (Bbchit1) in Escherichia coli and Pichia pastoris. Protein Expr. Purif. 56: 93-99. https://doi.org/10.1016/j.pep.2007.06.012
  15. Fomina, M., S. Hillier, J. M. Charnock, K. Melville, I. J. Alexander, and G. M. Gadd. 2005. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl. Environ. Microbiol. 71: 371-381. https://doi.org/10.1128/AEM.71.1.371-381.2005
  16. Fuguet, R., M. Théraud, and A. Vey. 2004. Production in vitro of toxic macromolecules by strains of Beauveria bassiana, and purification of a chitosanase-like protein secreted by a melanizing isolate. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138: 149-161. https://doi.org/10.1016/j.cca.2004.06.009
  17. Goettel, M. S., R. J. St. Leger, N. W. Rizzo, R. C. Staples, and D. W. Roberts. 1989. Ultrastructural localization of a cuticle degrading protease produced by the entomopathogenic fungus, Metarhizium anisopliae during penetration of host cuticle. J. Gen. Microbiol. 135: 2223-2239.
  18. Hallsworth, J. E. and N. Magan. 1996. Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl. Environ. Microbiol. 62: 2435-2442.
  19. Havukkala, I., C. Mitamura, S. Hara, K. Hirayae, Y. Nishizawa, and T. Hibi. 1993. Induction and purification of Beauveria bassiana chitinolytic enzymes. J. Invertebr. Pathol. 61: 97-102. https://doi.org/10.1006/jipa.1993.1017
  20. Humber, R. A. 1997. Fungi: Preservation of cultures, pp. 269- 279. In L. A. Lacey. (ed.). Manual of Techniques in Insect Pathology. Academic Press, San Diego.
  21. Inglis, G. D., D. L. Johnson, and M. S. Goettel. 1997. Effects of temperature and sunlight on mycosis of Beauveria bassiana (Hyphomycetes: Sympodulosporae) of grasshoppers under field conditions. Environ. Entomol. 26: 400-409. https://doi.org/10.1093/ee/26.2.400
  22. Jackson, M. A., A. R. Payne, and D. A. Odelson. 2004. Liquidculture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment. J. Ind. Microbiol. Biotechnol. 31: 149-154.
  23. Kaur, G. and V. Padmaja. 2008. Relationships among activities of extracellular enzyme production and virulence against Helicoverpa armigera in Beauveria bassiana. J. Basic Microbiol. 48: 1-10. https://doi.org/10.1002/jobm.200890001
  24. Kim, J. S., J. Y. Roh, J. Y. Choi, Y. Wang, H. J. Shim, and Y. H. Je. 2009. Correlation of the aphicidal activity of Beauveria bassiana SFB-205 supernatant with enzymes. Mycol. Res. 114: 120-128.
  25. Kim, J. S., J. Y. Roh, J. Y. Choi, and Y. H. Je. 2010. Influence of two FPLC fractions from Beauveria bassiana SFB-205 supernatant on the insecticidal activity against cotton aphid. Biocontr. Sci. Technol. 20: 77-81. https://doi.org/10.1080/09583150903419538
  26. Kim, J. S. and Y. H. Je. 2010. Relation of aphicidal activity with cuticular degradation by Beauveria bassiana SFB-205 supernatant incorporated with polyoxyethylene-(3)-isotridecyl ether. J. Microbiol. Biotechnol. 20: 506-509.
  27. Kim, J. S. and Y. H. Je. 2010. A novel biopesticide production: Attagel-mediated precipitation of chitinase from Beauveria bassiana SFB-205 supernatant for thermotolerance. Appl. Microbiol. Biotechnol. 87: 1639-1648. https://doi.org/10.1007/s00253-010-2543-1
  28. Kim, J. S., Y. H. Je, and E. O. Woo. 2010. Roles of adjuvants in aphicidal activity of enzymes from Beauveria bassiana (Ascomycota: Hypocreales) SFB-205 supernatant. J. Asia. Pac. Entomol. 13: 345-350. https://doi.org/10.1016/j.aspen.2010.06.002
  29. Moraes, C. K., A. Schrank, and M. H. Vainstein. 2003. Regulation of extracellular chitinase and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr. Microbiol. 46: 205-210. https://doi.org/10.1007/s00284-002-3863-x
  30. Murad, A. M., R. A. Laumann, A. Mehta, E. F. Noronha, and O. L. Franco. 2007. Screening and secretomic analysis of entomopathogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculates) exoskeleton. Comp. Biochem. Physiol. C 145: 333-338.
  31. Prakasham, R. S., C. H. Subba Rao, and P. N. Sarma. 2006. Green gram husk - an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454. https://doi.org/10.1016/j.biortech.2005.07.015
  32. Roberts, D. W. and A. E. Hajek. 1992. Entomopathogenic fungi as bioinsecticides, pp. 114-159. In G. F. Leatham. (ed.). Frontiers of Industrial Mycology. Chapman and Hall, New York.
  33. Roberts, W. K. and C. P. Selitrennikoff. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134: 169-176.
  34. Singer, M. A. and S. Lindquist. 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1: 639-648. https://doi.org/10.1016/S1097-2765(00)80064-7
  35. St. Leger, R. J., L. Joshi, M. J. Bidochka, N. W. Rizzo, and D. W. Roberts. 1996. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol. 62: 1257-1264.
  36. St. Leger, R. J. and S. E. Screen. 2001. Prospects for strain improvement of fungal pathogens of insects and weeds, pp. 219-237. In T. M. Butt, C. Jackson, and N. Magan. (eds.). Fungi as Biocontrol Agents. CABI Publishing, Wallingford.
  37. Suman, S. and K. Ramesh. 2010. Production of a thermostable extracellular amylase from thermophilic Bacillus species. J. Pharm. Sci. Res. 2: 149-154.
  38. Urtz, B. E. and W. C. Rice. 2000. Purification and characterization of a novel extracellular protease from Beauveria bassiana. Mycol. Res. 104: 180-186. https://doi.org/10.1017/S0953756299001215
  39. Volpato, G., R. C. Rodrigues, J. X. Heck, and M. A. Z. Ayub. 2009. Effects of oxygen volumetric mass transfer coefficient and pH on lipase production by Staphylococcus warneri EX17. Biotechnol. Bioproc. Eng. 14: 105-111. https://doi.org/10.1007/s12257-008-0040-5
  40. Wraight, S. P., M. A. Jackson, and S. L. de Kock. 2001. Production, stabilization and formulation of fungal biological agents, pp. 253-287. In T. M. Butt, C. Jackson, and N. Magan. (eds.). Fungi as Biocontrol Agents. CABI Publishing, Wallingford.
  41. Yatin, B. T., N. S. Venkataraman, T. K. Parija. D. Panneerselvam, P. Govindanayagi, and K. Geetha. 2006. The New Biopesticide Market. Business Communications Research, Denver.
  42. Zibaee, A. and A. R. Bandani. 2009. Purification and characterization of the cuticle-degrading protease produced by the entomopathogenic fungus Beauveria bassiana in the presence of Sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) cuticle. Biocontr. Sci. Technol. 19: 797-808. https://doi.org/10.1080/09583150903132172

Cited by

  1. Beauveria bassiana Bb08의 살충성 물질 생산을 위한 배양조건의 통계적 최적화 vol.41, pp.4, 2011, https://doi.org/10.4014/kjmb.1309.09006