DOI QR코드

DOI QR Code

Offshore Wind Power, Review

해상풍력(Offshore Wind Power) 기술동향

  • Nah, Do-Baek (KISTI(KOREA Institute of Science and Technology Information)) ;
  • Shin, Hyo-Soon (KISTI(KOREA Institute of Science and Technology Information)) ;
  • Nah, Duck-Joo (KISTI(KOREA Institute of Science and Technology Information))
  • Received : 2011.03.31
  • Accepted : 2011.05.25
  • Published : 2011.06.30

Abstract

Offshore wind power(OWP) is one of the most promising renewable energy and gives higher output than onland one due to stronger and consistent wind in offshore. it offsets shortcoming of noise, spatial limit and less affects scenery, and can be built in larger size. Korea has plenty of offshore wind resources as it is surrounded by the sea in three directions. This review describes recent progress in offshore wind turbine and substructure technology. Market trend in local and overseas, Number of papers published and patents registered are analysed.

해상풍력발전은 가장 유망한 재생 에너지의 하나이며, 육상풍력발전보다 풍력이 강력하고 일정해서 장시간 고출력 발생이 가능하고 소음, 공간적 한계, 경관훼손 등 기존 육상풍력발전의 단점을 보완하고 초대형으로 제작할 수 있다. 우리나라는 3면이 바다로 둘러싸여 해상풍력자원이 풍부하고 발전가능성이 크다. 이 고찰은 해상풍력발전기의 터빈과 하부구조물 기술동향, 국내외 시장동향, 학술 및 특허정보를 분석하였다.

Keywords

References

  1. S Tadigadapa et. al, "Review of Knowle dge Development for the Design of Offshore Wind Energy Technology", Wind Energy, 12, 2009, pp.411-430. https://doi.org/10.1002/we.349
  2. M. O. L. Hansen et al, "State of the art in wind turbine aerodynamics and aeroelasticity", Progress in Aerospace Science 42, 2006, pp.285-330. https://doi.org/10.1016/j.paerosci.2006.10.002
  3. Seidel M, "Design, fabrication and installation of the offshore wind turbine REpower 5M", STAHLBAU, 76, 9, pp.650-656.
  4. Zhao-xue CHENG et., al, "Criterion of aerodynamic performance of large scale offshore horizontal axis wind turbine", Applied Mathematics and Mechanics, 31, 1, 2010, pp.13-20. https://doi.org/10.1007/s10483-010-0102-2
  5. 이기학 et., al, "효율적인 2단계 최적화를 통한 3차원 해상풍력터빈 블레이드 설계", 신재생에너지, 3, 3, 2007, pp.63-71.
  6. Puneet Agarwal et., al, "Simulation of offshore wind turbine response for long-term extreme load prediction", Engineering Structures, 31, 2009, pp.2236-2246. https://doi.org/10.1016/j.engstruct.2009.04.002
  7. J.F. Manwell et., al, "Review of design conditions applicable to offshore wind energy systems in the United States", Renewable Energy and Sustainable Energy Review, 11, 2007, pp.210-234. https://doi.org/10.1016/j.rser.2005.01.002
  8. Leblanc C et., al, "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60, 2, 2010, pp.79-90. https://doi.org/10.1680/geot.7.00196
  9. Duhrkop J et., al, "Monopile foundations for offshore-wind power plants - On the influence of multidirectional cyclic loading", BAUTECHNIK, 85, 5, 2008, pp.317-321. https://doi.org/10.1002/bate.200810024
  10. B.W. Byme, "Assessing Novel Foundation Options for Offshore Wind Turbines", PHILOSOPHICAL TRANSACT ONS of THE ROYAL SOCIETY A, 361, 2003, pp.2909-2930. https://doi.org/10.1098/rsta.2003.1286
  11. Houlsby GT et., al, "Field trials of suction caissons in sand for offshore wind turbine foundations", Geotechnique, 56, 1, 2006, pp.3-10. https://doi.org/10.1680/geot.2006.56.1.3
  12. EWEA(2010), New Energy Finance(2010), 지식경제부 홈페이지.
  13. NEDO再生可能エネルギ一技術白書 (2010年7月).
  14. http://apps.isiknowledge.com
  15. DWPI DB.

Cited by

  1. Convergence system of offshore wind infrastructure monitoring using the RC submarine vol.6, pp.6, 2015, https://doi.org/10.15207/JKCS.2015.6.6.177
  2. Output Control of Wind Farm Side Converter from DC Link for DC Voltage Stabilization with HVDC vol.65, pp.9, 2016, https://doi.org/10.5370/KIEE.2016.65.9.1479
  3. Analysis of the Multi-layered Soil on Monopile Foundation of Offshore Wind Turbine vol.37, pp.6, 2013, https://doi.org/10.5394/KINPR.2013.37.6.655