DOI QR코드

DOI QR Code

A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor

  • Kim, Young-Hee (Department of Chemistry, Institute for Chemical Biology, Sejong University) ;
  • Han, Yeon-Kun (Department of Chemistry, Institute for Chemical Biology, Sejong University) ;
  • Kang, Jong-Min (Department of Chemistry, Institute for Chemical Biology, Sejong University)
  • Received : 2011.09.20
  • Accepted : 2011.10.04
  • Published : 2011.12.20

Abstract

A simple chromogenic system based on 1-fluoride was developed to determine water content in organic solvent. This system utilized deprotonation and protonation of the anion receptor 1. The water content evaluated from this system gave close value to the real water content in the range of 0 to 0.35% in acetonitrile and 0.2 to 0.5% in DMSO. Therefore, protonation and deprotonation phenomenon from the anion receptor by basic anion could be promising method for water sensing system.

Keywords

References

  1. Wang, Q.; Li, X.; Wang, L.; Cheng, Y.; Xie, G. Ind. Eng. Chem. Res. 2005, 44, 4518. https://doi.org/10.1021/ie048755s
  2. Al-Zuhair, S.; Jayaraman, K. V.; Krishnan, S.; Chan, W.-H. Biochem. Eng. J. 2006, 30, 212. https://doi.org/10.1016/j.bej.2006.04.007
  3. O'Keefe, W. K.; Ng, F. T. T.; Rempel, G. L. J. Chromatogr. A 2008, 1182, 113. https://doi.org/10.1016/j.chroma.2007.12.044
  4. Nguyen, T. N. P.; Kim, K.-J. Ind. Eng. Chem. Res. 2010, 49, 4842. https://doi.org/10.1021/ie901677n
  5. Timm, R. A.; Falla, M. P. H.; Huila, M. F. G.; Peres, H. E. M.; Ramirez-Fernandez, F. J.; Araki, K.; Toma, H. E. Sens. Actuator B-Chem. 2010, 146, 61. https://doi.org/10.1016/j.snb.2010.01.045
  6. Fischer, K. Angew. Chem. 1935, 48, 394. https://doi.org/10.1002/ange.19350482605
  7. Kestens, V.; Conneely, P.; Bernreuther, A. Food Chem. 2008, 106, 1454. https://doi.org/10.1016/j.foodchem.2007.01.079
  8. Hisamoto, H.; Manabe, Y.; Yanai, H.; Tohma, H.; Yamada, T.; Suzuki, K. Anal. Chem. 1998, 70, 1255. https://doi.org/10.1021/ac970637+
  9. Citterio, D.; Kawada, T.; Yagi, J.; Ishigaki, T.; Hisamoto, H.; Sasaki, S. I.; Suzuki, K. Anal. Chim. Acta 2003, 482, 19. https://doi.org/10.1016/S0003-2670(03)00200-9
  10. Kumoi, S.; Kobayashi, H.; Ueno, K. Talanta 1972, 19, 505. https://doi.org/10.1016/0039-9140(72)80112-7
  11. Gruda, I.; Bolduc, F. J. Org. Chem. 1984, 49, 3300. https://doi.org/10.1021/jo00192a010
  12. Lu, H.; Rutan, S. C. Anal. Chem. 1996, 68, 1381. https://doi.org/10.1021/ac9507808
  13. Liu, W.; Wang, Y.; Jin, W.; Shen, G.; Yu, R. Anal. Chim. Acta 1999, 383, 299. https://doi.org/10.1016/S0003-2670(98)00789-2
  14. Niu, C. G.; Guan, A. L.; Zeng, G. M.; Liu, Y. G.; Li, Z. W. Anal. Chim. Acta 2006, 577, 264. https://doi.org/10.1016/j.aca.2006.06.046
  15. Ercelen, S.; Klymchenko, A. S.; Demchenko, A. P. Anal. Chim. Acta 2002, 464, 273. https://doi.org/10.1016/S0003-2670(02)00493-2
  16. Niu, C. G.; Qin, P. Z.; Zeng, G. M.; Gui, X. Q.; Guan, A. L. Anal. Bioanal. Chem. 2007, 387, 1067. https://doi.org/10.1007/s00216-006-1016-y
  17. Kim, K. N.; Song, K. C.; Noh, J. H.; Chang, S.-K. Bull. Korean Chem. Soc. 2009, 30, 197. https://doi.org/10.5012/bkcs.2009.30.1.197
  18. Moon, J. O.; Kim, Y. H.; Choi, M. G.; Chang S.-K. Bull. Korean. Chem. Soc. 2011, 32, 3517. https://doi.org/10.5012/bkcs.2011.32.9.3517
  19. Kim, Y. H.; Choi, M. G.; Im, H. G.; Ahn, S.; Shim, I. W.; Chang,S.-K. Dyes Pigm. in press.
  20. Amedola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 39, 343. https://doi.org/10.1021/ar050195l
  21. Dang, N. T.; Park, J. J.; Jang, S.; Kang, J. Bull. Korean Chem. Soc. 2010, 31, 1204. https://doi.org/10.5012/bkcs.2010.31.5.1204
  22. Kang, J.; Lee, Y. J.; Lee, S. K.; Lee, J. H.; Park, J. J.; Kim, Y.; Kim, S.-J.; Kim, C. Supramol. Chem. 2010, 22, 267. https://doi.org/10.1080/10610270903449973
  23. Park, J. J.; Kim, Y.- H.; Kim, C.; Kang, J. Tetrahedron Lett. 2011, 52, 3361. https://doi.org/10.1016/j.tetlet.2011.04.081
  24. Kang, J.; Jang, S. P.; Kim, Y.-H.; Lee, J. H.; Park, E. B.; Lee, H. G.; Kim, J. H.; Kim, Y.; Kim S.-J.; Kim, C. Tetrahdron Lett. 2010, 51, 6658. https://doi.org/10.1016/j.tetlet.2010.10.058

Cited by

  1. A dual channel optical detector for trace water chemodosimetry and imaging of live cells vol.138, pp.10, 2013, https://doi.org/10.1039/c3an36887d
  2. Dual-mode chemodosimetric response of dibromo-BODIPY with anions vol.13, pp.40, 2015, https://doi.org/10.1039/C5OB01386K
  3. Optode Membrane for Detecting a Wide Range of Water Content in Organic Solvents vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10042
  4. Coumarin phenylsemicarbazones: sensitive colorimetric and fluorescent “turn-on” chemosensors for low-level water content in aprotic organic solvents vol.40, pp.10, 2016, https://doi.org/10.1039/C6NJ01639A
  5. Fluorescent and colorimetric sensors for the detection of humidity or water content vol.45, pp.5, 2016, https://doi.org/10.1039/C5CS00494B
  6. 7-Dialkylaminocoumarin Oximates: Small Molecule Fluorescent “Turn-On” Chemosensors for Low-Level Water Content in Aprotic Organic Solvents vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081340
  7. Reversible Colorimetric Sensor for Moisture Detection in Organic Solvents and Application in Inkless Writing vol.9, pp.30, 2017, https://doi.org/10.1021/acsami.7b05335
  8. A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: applications in rewritable paper and fingerprint imaging pp.1364-5528, 2019, https://doi.org/10.1039/C8AN01042K
  9. Development of a rhodamine-benzimidazol hybrid derivative as a novel FRET based chemosensor selective for trace level water vol.4, pp.41, 2011, https://doi.org/10.1039/c4ra02585g
  10. 8(E)-4-[{2-(2,4-dinitrophenyl)hydrazono}benzene-1,3-diol] as a solvatochromic Schiff base and chromogenic signaling of water content by its deprotonated form in acetonitrile vol.4, pp.52, 2011, https://doi.org/10.1039/c4ra03249g
  11. Detection of Moisture by Fluorescent OFF-ON Sensor in Organic Solvents and Raw Food Products vol.88, pp.23, 2011, https://doi.org/10.1021/acs.analchem.6b03949
  12. Three Indole Derived Azo-Azomethine Dyes as Effective Chemosensors for F Ion and Trace Water Detection vol.93, pp.7, 2011, https://doi.org/10.1246/bcsj.20200003
  13. The Colorimetric Signaling of Water Content by a Deprotonated Schiff Base in some Aprotic Organic Solvents vol.5, pp.30, 2020, https://doi.org/10.1002/slct.202002005
  14. Simple Iron(III) Complex Based Highly Sensitive Fluorescent Off‐On Sensor for the Detection of Trace Amount of Water in Organic Solvents and Edible Oilseeds vol.5, pp.34, 2011, https://doi.org/10.1002/slct.202002530
  15. Chemical Sensors for Water Detection in Organic Solvents and their Applications vol.6, pp.4, 2011, https://doi.org/10.1002/slct.202003920