DOI QR코드

DOI QR Code

Zinc Porphyrin-Cored Dendrimers; Axial Coordination of Pyridine and Photoinduced Electron Transfer to Methyl Viologen

  • Park, Ji-Eun (Department of Chemistry, Sunchon National University) ;
  • Choi, Dae-Ock (Department of Chemistry, Sunchon National University) ;
  • Shin, Eun-Ju (Department of Chemistry, Sunchon National University)
  • Received : 2011.09.02
  • Accepted : 2011.10.06
  • Published : 2011.12.20

Abstract

The porphyrin-incorporated arylether dendrimers ZnP-D1 and ZnP-D4 were investigated to discover the influence of dendritic environments for the axial ligation of pyridine and photoinduced electron transfer by methyl viologen. Absorption and fluorescence spectra of ZnP, ZnP-D1, and ZnP-D4 were measured in dichloromethane with the addition of pyridine or methyl viologen dichloride. Axial ligation of pyridine was confirmed by red-shifted absorption spectrum. The complex formation constants $K_f$ (Table 1) for axial coordination of pyridine on ZnP, ZnP-D1, and ZnP-D4 were estimated to be $4.4{\times}10^3\;M^{-1}$, $3.3{\times}10^3\;M^{-1}$, and $1.7{\times}10^3\;M^{-1}$, respectively. The photoinduced electron transfer to methyl viologen dichloride was confirmed by fluorescence quenching. Stern-Volmer constants Ksv for ZnP, ZnP-D1, and ZnP-D4 were calculated to be $2.6{\times}10^3$, $2.5{\times}10^3$, and $2.1{\times}10^3$, respectively. ZnP-D4 surrounded by 4 aryl ether dendrons shows the smallest $K_f$ and Ksv values, with comparison to ZnP and ZnP-D1.

Keywords

References

  1. Wasielewski, M. J. Org. Chem. 2006, 71, 5051. https://doi.org/10.1021/jo060225d
  2. Lomoth, R.; Magnuson, A.; Sjoedin, M.; Huang, P.; Styring, S.; Hammarstroem, L. Photosynth. Res. 2006, 87, 25. https://doi.org/10.1007/s11120-005-9005-0
  3. Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Inorg. Chem. 2005, 44, 6802. https://doi.org/10.1021/ic050904r
  4. Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed. 2003, 43, 150.
  5. Imahori, H.; Mori, Y.; Matano, Y. J. Photochem. Photobiol., C 2003, 4, 51. https://doi.org/10.1016/S1389-5567(03)00004-2
  6. Willner, I.; Willner, B. Top. Curr. Chem. 1991, 159, 153. https://doi.org/10.1007/3-540-53257-9_4
  7. Balzani, V.; Scandola, F.; Fox, M. A.; Chanon, M., Eds., In Photoinduced Electron Transfer Part A-D, Elsevier: Amsterdam, 1988; pp 148-178.
  8. D'Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O. J. Am. Chem. Soc. 2004, 126, 7898. https://doi.org/10.1021/ja030647u
  9. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198 https://doi.org/10.1021/ar00028a010
  10. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40. https://doi.org/10.1021/ar9801301
  11. Pleux, L. L.; Pellegrin, Y.; Blart, E.; Odobel, F.; Harriman, A. J. Phys. Chem. A 2001, 115, 5069.
  12. Imahori, H. Org. Biomol. Chem. 2004, 2, 1425. https://doi.org/10.1039/b403024a
  13. Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22. https://doi.org/10.1039/b106962b
  14. Newkome, G. R.; Moorefield, C. N.; Vogtle, F. Dendrimers and Dendrons-Concepts, Synthesis, Applications; Wiley-VCH: Weinheim, 2001.
  15. Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857. https://doi.org/10.1021/cr900327d
  16. Balzani, V.; Ceroni, P.; Juris, A.; Venturi, M.; Campagna, S.; Puntoriero, F.; Serroni, S. Coord. Chem. Rev. 2001, 219-221, 545. https://doi.org/10.1016/S0010-8545(01)00351-4
  17. Maes, W.; Dehaen, W. Eur. J. Org. Chem. 2009, 4719.
  18. Nagata, T.; Kikuzawa, Y. Biochim. Biophys. Acta 2007, 1767, 648. https://doi.org/10.1016/j.bbabio.2006.11.006
  19. Kozaki, M.; Akita, K.; Suzuki, S.; Okada, K. Org. Lett. 2007, 9, 3315. https://doi.org/10.1021/ol071296h
  20. Larsen, J.; Brueggemann, B.; Sly, J.; Crossley, M. J.; Sundstroem, V.; Aakesson, E. Chem. Phys. Lett. 2006, 433, 159. https://doi.org/10.1016/j.cplett.2006.11.006
  21. Campidelli, S.; Sooambar, C.; Diz, E. L.; Ehli, C.; Guldi, D. M.; Prato, M. J. Am. Chem. Soc. 2006, 128, 12544. https://doi.org/10.1021/ja063697i
  22. Li, W.-S.; Kim, K. S.; Jiang, D.-L.; Tanaka, H.; Kawai, T.; Kwon, J. H.; Kim, D.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10527. https://doi.org/10.1021/ja063081t
  23. Cho, S.; Li, W.-S.; Yoon, M.-C.; Ahn, T. K.; Jiang, D.-L.; Kim, J.; Aida, T.; Kim, D. Chem.-Eur. J. 2006, 12, 7576. https://doi.org/10.1002/chem.200600213
  24. Oar, M. A.; Dichtel, W. R.; Serin, J. M.; Fréchet, J. M. J.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2006, 18, 3682. https://doi.org/10.1021/cm0606070
  25. Ogasawara, S.; Ikeda, A.; Kikuchi, J.-I. Chem. Mater. 2006, 18, 5982. https://doi.org/10.1021/cm061812i
  26. Figueira-Duarte, T. M.; Clifford, J.; Amendola, V.; Gegout, A.; Olivier, J.; Cardinali, F.; Meneghetti, M.; Armaroli, N.; Nierengarten, J.-F. Chem. Commun. 2006, 2054.
  27. Flamigni, L.; Talarico, A. M.; Ventura, B.; Sooambar, C.; Solladie, N. Eur. J. .Inorg. Chem. 2006, 2155.
  28. Mo, Y.-J.; Jiang, D.-L.; Uyemura, M.; Aida, T.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 10020. https://doi.org/10.1021/ja042196z
  29. Hasobe, T.; Kamat, P. V.; Absalom, M. A.; Kashiwagi, Y.; Sly, J.; Crossley, M. J.; Hosomizu, K.; Imahori, H.; Fukuzumi, S. J. Phys. Chem. B 2004, 108, 12865. https://doi.org/10.1021/jp048404r
  30. Capitosti, G. J.; Cramer, S. J.; Rajesh, C. S.; Modarelli, D. A. Org. Lett. 2001, 3, 1645. https://doi.org/10.1021/ol015837t
  31. Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996, 118, 3978. https://doi.org/10.1021/ja952855v
  32. Tsuda, A.; Alam, M. A.; Harada, T.; Yamaguchi, T.; Ishii, N. Angew. Chem. Int. Ed. 2007, 46, 8198. https://doi.org/10.1002/anie.200703083
  33. Lee, D.-I.; Goodson, T. III J. Phys. Chem. B 2006, 110, 25582. https://doi.org/10.1021/jp066767g
  34. Li, Y.; Rizzo, A.; Salerno, M.; Mazzeo, M.; Huo, C.; Wang, Y.; Li, K.; Cingolani, R.; Gigli, G. Appl. Phys. Lett. 2006, 89, 1.
  35. Oh, J. B.; Kim, Y. H.; Nah, M. K.; Kim, H. K. J. Luminescence 2005, 111, 255. https://doi.org/10.1016/j.jlumin.2004.10.006
  36. Lim, S.; Choi, D.; Shin, E. J. Bull. Korean Chem. Soc. 2008, 29, 1353. https://doi.org/10.5012/bkcs.2008.29.7.1353
  37. Nappa, M.; Valentine, J. S. J. Am. Chem. Soc. 1978, 100, 5075. https://doi.org/10.1021/ja00484a027
  38. D'Souza, F.; Hsieh, Y.-Y.; Deviprasad, G. R. Inorg. Chem. 1996, 35, 5747. https://doi.org/10.1021/ic960041p
  39. Ambroise, A.; Li, J.; Yu, L.; Lindsey, J. S. Org. Lett. 2000, 2, 2563. https://doi.org/10.1021/ol006036d
  40. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703. https://doi.org/10.1021/ja01176a030
  41. Wasielewski, M. Chem. Rev. 1992, 92, 435. https://doi.org/10.1021/cr00011a005
  42. Rajesh, C. S.; Capitosti, G. J.; Cramer, S. J.; Modarelli, D. A. J. Phys. Chem. B 2001, 105, 10175. https://doi.org/10.1021/jp010575y
  43. Sessler, J. L.; Johnson, M. R.; Lin, T. Y.; Creager, S. E. J. Am. Chem. Soc. 1988, 110, 3659. https://doi.org/10.1021/ja00219a052
  44. Straight, S. D.; Andréasson, J.; Kodis, G.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 2005, 127, 2717. https://doi.org/10.1021/ja044128i
  45. Pasunooti, K. K.; Song, J.-L.; Chai, H.; Amaladass, P.; Deng, W.- Q.; Liu, X.-W. J. Photochem. Photobiol. A: Chem. 2011, 218, 219. https://doi.org/10.1016/j.jphotochem.2011.01.003
  46. Kaganer, E.; Joselevich, E.; Willner, I.; Chen, Z.; Gunter, M. J.; Gayness, T. P.; Johnson, M. R. J. Phys. Chem. B 1998, 102, 1159. https://doi.org/10.1021/jp973069a
  47. Hosono, H.; Kaneko, M. J. Photochem. Photobiol. A: Chem. 1997, 107, 63. https://doi.org/10.1016/S1010-6030(97)00028-2

Cited by

  1. Facile Preparation of Hybrid Zinc Porphyrin Dendrimer Using Coordination Complex vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10677
  2. Dendron to Central Core S1–S1 and S2–Sn (n>1) Energy Transfers in Artificial Special Pairs Containing Dendrimers with Limited Numbers of Conf vol.19, pp.13, 2011, https://doi.org/10.1002/chem.201203033
  3. Solvent-dependent Photoreactions of Porphyrin-Spiropyran Dyad: Ring-opening or Protonation vol.34, pp.10, 2011, https://doi.org/10.5012/bkcs.2013.34.10.3125
  4. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range vol.90, pp.11, 2018, https://doi.org/10.1021/acs.analchem.8b01230