DOI QR코드

DOI QR Code

Antimicrobial Hydrogel Contact Lens Containing Alginate

  • Lee, Hyun-Mee (Department of Optometry & Vision Science, College of Health and Medical Science, Catholic University of Daegu) ;
  • Kim, Jong-Ki (Department of Biomedical Engineering, School of Medicine, Catholic University of Daegu) ;
  • Cho, Tae-Sub (Department of Chemistry, College of Sciences, Yeungnam University)
  • Received : 2011.05.30
  • Accepted : 2011.10.07
  • Published : 2011.12.20

Abstract

Biocompatible hydrogels from 2-hydroxyethyl methacrylate (HEMA) monomer containing various amount of alginate in the presence and absence of hydrophilic methacrylic acid (MAA) were synthesized in order for biomedical application. The antimicrobial effect and interaction with proteins for hydrogels were investigated in this study. MAA was introduced because it was expected to increase the amount of water content in the polymer which is an important factor for biocompatibility, and alginate was expected to enhance the antimicrobial activity. The antimicrobial effect against S. aureus and E. coli increased for all hydrogels as the amount of alginate and MAA contained. Presence of MAA further enhances the antimicrobial effect. Amount of adsorption of bovine serum albumin (BSA) increased with increasing concentration of alginate whether MAA was present or not. Contrarily, the amount of lysozyme was not affected with increasing alginate concentration in the absence of MAA, while it decreased in the presence of MAA.

Keywords

References

  1. Sokker, H. H.; Ghaffar, A. M. A.; Gad, Y. H.; Aly, A. S. Synthesis and Characterization of Hydrogels Based on Grafted Chotosan for the Controlled Drug Release; Carbohydr. Polym. 2009, 75, 222-229. https://doi.org/10.1016/j.carbpol.2008.06.015
  2. Piras, A. M.; Chiellini, F.; Fiumi, C.; Bartoli, C.; Fiorentino, B.; Faina, C. Int. J. Pharm. 2008, 357, 260-271. https://doi.org/10.1016/j.ijpharm.2008.01.035
  3. Xiong, M. P.; Forrest, M. L.; Ton, G.; Zhao, A.; Davies, N. M.; Kwon, G. S. Biomaterials 2007, 28, 4889-4900. https://doi.org/10.1016/j.biomaterials.2007.07.043
  4. Beyer, M.; Felgenhauer, T.; Bischoff, F. R.; Bretling, F.; Stadler, V. Biomaterials 2006, 27, 3505-3514. https://doi.org/10.1016/j.biomaterials.2006.01.046
  5. Dini, L.; Panzarini, E.; Miccoi, M. A.; Miceli, V.; Protopapa, C.; Ramires, P. A. Tissue Cell 2005, 37, 479-487. https://doi.org/10.1016/j.tice.2005.09.002
  6. Chien, Y. W.; Lin, S. S. Clin Pharmacokinet 2002, 41, 1267-1299. https://doi.org/10.2165/00003088-200241150-00003
  7. Yu, B.; Wang, C.; Ju, Y. M.; West, L.; Harmon, J.; Moussy, J. Y. Biosens. Bioelectron. 2008, 23, 1278-1284. https://doi.org/10.1016/j.bios.2007.11.010
  8. Hu, M.-X.; Yang, Q.; Xu, Z.-K. J. Membr. Sci. 2006, 285, 196-205. https://doi.org/10.1016/j.memsci.2006.08.023
  9. Lou, X.; Munro, S.; Wang, S. Biomaterials 2004, 25, 5071-5080. https://doi.org/10.1016/j.biomaterials.2004.01.058
  10. Rosso, F.; Barbarisi, A.; Barbarisi, M.; Petillo, O.; Margarucci, S.; Calarco, A.; Peluso, G. Mater. Sci. Eng. C 2003, 23, 371-376. https://doi.org/10.1016/S0928-4931(02)00290-4
  11. Lord, M. S.; Stenzei, M. H.; Simmons, A.; Milthorpe, B. K. Biomaterials 2006, 27, 567-575. https://doi.org/10.1016/j.biomaterials.2005.06.010
  12. Koffas, T. S.; Opdahl, A.; Marmo, C.; Somorjal, G. A. Langmuir 2003, 19, 3453-3460. https://doi.org/10.1021/la026719x
  13. Chhabra, P.; Gupta, R.; Suri, G.; Tyagi, M.; Seshadri, G.; Sabharwal, S.; Niyogi, U. K.; Khandal, R. K. Int. J. Polym. Sci. 2009; p 1-9 (Article ID 906904).
  14. Sato, T.; Uchida, R.; Tanigawa, H.; Uno, K.; Murakami, A. J. Appl. Polym. Sci. 2005, 98, 731-735. https://doi.org/10.1002/app.22080
  15. Alvarez-Lorenzo, C.; Concheiro, A. J. Chtomatogr. B 2004, 804, 231-245. https://doi.org/10.1016/j.jchromb.2003.12.032
  16. Alvarez-Lorenzo, C.; Hiratani, H.; Gomez-Amoza, J. L.; Martinez- Pacheco, R.; Souto, C.; Concheiro, A. J. Pharm. Sci. 2002, 91, 2182-2192. https://doi.org/10.1002/jps.10209
  17. Garrett, Q.; Laycock, B.; Garett, R. W. Biomaterials 2006, 27, 1341-1345. https://doi.org/10.1016/j.biomaterials.2005.09.007
  18. Scheider, G. B.; English, A.; Abraham, M.; Zaharias, R.; Stanford, C.; Keller, J. Biomaterials 2004, 25, 3023-3028. https://doi.org/10.1016/j.biomaterials.2003.09.084
  19. Hoffman, A. S. Adv. Drug Deliv. 2002, 43, 3-12.
  20. Chen, S.; Liu, M.; Jin, S.; Chen, Y. J. Appl. Polym. Sci. 2005, 98, 1720-1726. https://doi.org/10.1002/app.22348
  21. La Gatta, A.; De Rosa, A.; Laurienzo, P.; Malinconico, M.; De Rosa, M.; Schiraldi, C. Macromol. Biosci. 2005, 5, 1108-1117. https://doi.org/10.1002/mabi.200500114
  22. La Gatta, A.; Schiraldi, C.; Esposito, A.; D'Agostino, A.; De Rosa, A. J. Biomed. Mater. Res. A 2008; p 292-302.
  23. Quinn, K. J.; Courtney, J. M.; Evans, J. H.; Gaylor, J. D. S.; Reid, W. H. Biomaterials 1985, 6, 369-377. https://doi.org/10.1016/0142-9612(85)90095-X
  24. Shi, B. J.; Nie, X.-H.; Chen, L.-Z.; Liu, Y.-L.; Tao, W.-Y. Carbohydrate Polymers 2007, 68, 687-692. https://doi.org/10.1016/j.carbpol.2006.08.003
  25. Hayashi, K.; Nakano, T.; Hashimoto, M.; Kanekieyo, K.; Hayashi, T. Int. Immunophar. 2008, 8, 109-116. https://doi.org/10.1016/j.intimp.2007.10.017
  26. Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Int. J. Biol. Macromole 2008, 42, 127-132. https://doi.org/10.1016/j.ijbiomac.2007.10.003
  27. Augst, A. D.; Kong, H. J.; Mooney, D. J. Macromol. Biosci. 2006, 6, 623-633. https://doi.org/10.1002/mabi.200600069
  28. Irmgard Behlau, M. D.; Michael, S.; Gilmore, Arch. Ophthalmol. 2008, 126, 1572-1581. https://doi.org/10.1001/archopht.126.11.1572
  29. Nathan Efron et al., Contact lens Practice, Planta Tree: New Delhi, 2002; pp 71-80.
  30. Refojo, M. F. Water imbibition Dabezies, O. H. Eds. Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice, Grune and Stratton: New York, 1991, 9, 1-4.
  31. Tighe, B. In: Phillips F. Speed well, Eds., Contact lens materials in contact lenses. Buterworth-Heinemann: Edinburgh, 2009; pp 59- 78.
  32. Luensmann, D.; Jones, L. Contact Lens & Anterior Eye 2008, 31, 179-187. https://doi.org/10.1016/j.clae.2008.05.004
  33. Xinming, L.; Yingde, C.; Lloyd, A. W.; Mikhalovsky, S. V.; Sandeman, S. R.; Howel, C. A.; Liewen, L. Contact Lens & Anterior Eye 2008, 31, 57-64. https://doi.org/10.1016/j.clae.2007.09.002
  34. Garrett, Q.; Laycock, B.; Garett, R. W. Biomaterials 2006, 27, 1341-1345. https://doi.org/10.1016/j.biomaterials.2005.09.007
  35. Sariri, R. J. Appl. Biomater & Biomech. 2004, 2, 1-19.
  36. Fleiszig, S.; Efran, M. N. J. Clin. Microbiol. 1992, 30, 1156-61.
  37. Cook, A. D.; Sager, R. D.; Pitt, W. G. J. Biomater. Appl. 1993, 8, 72-89. https://doi.org/10.1177/088532829300800105
  38. Portoles, M.; Refojo, M. F. Adv. Exp. Med. Biol. 1994, 350, 421-426. https://doi.org/10.1007/978-1-4615-2417-5_73
  39. Solomon, O. D.; Refojo, M. F.; Leong, F. L. Cornea 1999, 11, 47-52.
  40. Luensmann, D.; Jones, L. Contact Lens & Anterior Eye 2008, 31, 179-187. https://doi.org/10.1016/j.clae.2008.05.004
  41. Bohnert, J. L.; Horbett, T. A.; Ratner, B. D.; Roycet, F. H. Invest. Ophthal. & Visual Sci. 1988, 29, 362-373.
  42. Garrett, Q.; Chatelier, R.; Griesser, H. J.; Milthorpe, B. K. Biomaterials 1998, 23, 2175-2186.
  43. Lord, M. S.; Stenzei, M. H.; Simmons, A.; Milthorpe, B. K. Biomaterials 2006, 27, 567-575. https://doi.org/10.1016/j.biomaterials.2005.06.010
  44. Garrett, Q.; Laycock, B.; Garett, R. W. Biomaterials 2006, 27, 1341-1345. https://doi.org/10.1016/j.biomaterials.2005.09.007
  45. Gao, B.; Hu, H.; Guo, J.; Li, Y. Colloids and Surfaces B: Biointerfaces 2010, 77, 206-213. https://doi.org/10.1016/j.colsurfb.2010.01.025
  46. Gao, B.; Fu, H.; Li, Y.; Du, R. J. Chromatogr B Analyt Technol. Biomed. Life Sci. 2010, 878, 1731-1738. https://doi.org/10.1016/j.jchromb.2010.04.033
  47. Allen, H. F. Ann Ophthalmol. 1971, 3, 235-246.
  48. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, J. O. J. Biomed. Mater. Res. 2000, 54, 662-668.
  49. Fleiszig, S. M.; Evans, D. J.; Mowrey-McKee, M. F.; Payor, R.; Zaidi, T. S.; Vallas, V.; Muller, E.; Pier, G. B. Optom. Vis. Sci. 1996, 73, 590-594. https://doi.org/10.1097/00006324-199609000-00005
  50. Cowell, B. A.; Willcox, M. D.; Schneider, R. P. J. of Appl. Microbiol. 1998, 84, 950-958. https://doi.org/10.1046/j.1365-2672.1998.00427.x
  51. Taylor, R. L.; Willcox, M. D.; Williams, T. J. J. Verran, Optomet. Vis. Sci. 1998, 75, 23-29. https://doi.org/10.1097/00006324-199801000-00021

Cited by

  1. Physical Properties of the Hydrogel Using Alginate vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.463
  2. Relationship between the Deposition of Tear Constituents and the Adherence of Candida albicans according to Soft Contact Lens Materials and Pigmentation vol.21, pp.3, 2016, https://doi.org/10.14479/jkoos.2016.21.3.215
  3. Applications of ophthalmic biomaterials embedded with fucoidan vol.18, pp.4, 2011, https://doi.org/10.1016/j.jiec.2012.01.030
  4. Applications of ophthalmic biomaterials embedded with fucoidan vol.18, pp.4, 2011, https://doi.org/10.1016/j.jiec.2012.01.030
  5. 알긴산에 의한 콘택트렌즈의 습윤성과 단백질 흡착 효과 vol.61, pp.6, 2011, https://doi.org/10.5012/jkcs.2017.61.6.352
  6. Correlation between Protein Deposition and Oxygen Transmissibility in Circle Contact Lenses vol.24, pp.1, 2011, https://doi.org/10.14479/jkoos.2019.24.1.21
  7. Antimicrobial materials based on poly(ethylene‐co‐vinyl alcohol) and silver acetate produced by reactive extrusion vol.136, pp.30, 2011, https://doi.org/10.1002/app.47799