References
- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
- A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157-173 (1996). https://doi.org/10.1117/12.231361
- A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). https://doi.org/10.1088/0034-4885/66/2/204
- M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005). https://doi.org/10.1117/1.1961474
- J. Xi, L. Huo, J. Li, and X. Li, "Generic real-time uniform k-space sampling method for high-speed swept-source optical coherence tomography," Opt. Express 18, 9511-9517 (2010). https://doi.org/10.1364/OE.18.009511
- V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, "Linear-wavenumber spectrometer for high-speed spectraldomain optical coherence tomography," Optics and Spectroscopy 106, 459-465 (2009). https://doi.org/10.1134/S0030400X09030242
- C. Ding, P. Bu, X. Wang, and O. Sasaki, "A new spectral calibration method for Fourier domain optical coherence tomography," Optik 121, 965-970 (2010). https://doi.org/10.1016/j.ijleo.2008.12.016
- S. Vergnole, D. Levesque, and G. Lamouche, "Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography," Opt. Express 18, 10446-10461 (2010). https://doi.org/10.1364/OE.18.010446
- M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, "Full-range k-domain linearization in spectral-domain optical coherence tomography," Appl. Opt. 50, 1158-1163 (2011). https://doi.org/10.1364/AO.50.001158
- Z. Wang, Z. Yuan, H. Wang, and Y. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006). https://doi.org/10.1364/OE.14.007014
- C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, "k-space linear Fourier domain mode locked laser and applications for optical coherence tomography," Opt. Express 16, 8916-2937 (2008). https://doi.org/10.1364/OE.16.008916
- E. Azimi, B. Liu, and M. E. Brezinski, "Real-time and high-performance calibration method for high-speed sweptsource optical coherence tomography," J. Biomed. Opt. 15, 016005 (2010). https://doi.org/10.1117/1.3285660
- Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). https://doi.org/10.1364/OE.15.006121
- M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra highspeed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17, 14880-14894 (2009). https://doi.org/10.1364/OE.17.014880
- B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second," Opt. Express 18, 20029-20048 (2010). https://doi.org/10.1364/OE.18.020029
- K. Zhang and J. U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express 18, 11772-11784 (2010). https://doi.org/10.1364/OE.18.011772
- Y. Watanabe and T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506 (2009). https://doi.org/10.1117/1.3275463
- S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, "Realtime resampling in Fourier domain optical coherence tomography using a graphics processing unit," J. Biomed. Opt. 15, 030511 (2010). https://doi.org/10.1117/1.3437078
Cited by
- Structural Analysis of Polymer Composites Using Spectral Domain Optical Coherence Tomography vol.17, pp.6, 2017, https://doi.org/10.3390/s17051155
- Non-Destructive Inspection Methods for LEDs Using Real-Time Displaying Optical Coherence Tomography vol.12, pp.12, 2012, https://doi.org/10.3390/s120810395
- Investigation of the Performance of Spectral Domain Optical Doppler Tomography with High-speed Line Scanning CMOS Camera and Its Application to the Blood Flow Measurement in a Micro-tube vol.16, pp.2, 2012, https://doi.org/10.3807/JOSK.2012.16.2.174
- Bio-Photonic Detection and Quantitative Evaluation Method for the Progression of Dental Caries Using Optical Frequency-Domain Imaging Method vol.16, pp.12, 2016, https://doi.org/10.3390/s16122076
- Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography vol.68, 2015, https://doi.org/10.1016/j.optlaseng.2014.12.013
- Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography vol.16, pp.12, 2016, https://doi.org/10.3390/s16101598
- Characteristics of a Wavelength-swept Laser with a Polygon-based Wavelength Scanning Filter vol.25, pp.2, 2014, https://doi.org/10.3807/KJOP.2014.25.2.061
- High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.068
- Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy vol.19, pp.7, 2014, https://doi.org/10.1117/1.JBO.19.7.071410
- Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer vol.21, pp.7, 2016, https://doi.org/10.1117/1.JBO.21.7.076005