DOI QR코드

DOI QR Code

Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography

  • Park, Jae-Seok (Department of Cogno-Mechatronics, WCU Program, Pusan National University) ;
  • Jeong, Myung-Yung (Department of Cogno-Mechatronics, WCU Program, Pusan National University) ;
  • Kim, Chang-Seok (Department of Cogno-Mechatronics, WCU Program, Pusan National University)
  • Received : 2011.08.22
  • Accepted : 2011.11.17
  • Published : 2011.12.25

Abstract

Common-path interferometers are widely used for endoscopic optical coherence tomography (OCT) because an arbitrary arm length can be chosen for the endoscopic imaging probe. However, the scheme suffers from the limited range of the sample position distance from the end of the imaging probe because the position between the reference reflector and the sample is limited by the optical path-length difference (OPD) to induce an interference signal. In this study, we developed a novel method for compensating the arbitrary sample position in common-path swept-source OCT by adding an extra Mach-Zehnder interferometer in the post-path of the interfered optical signal. Theoretical analysis and an experimental demonstration of imaging depth tuning for the flexible sample position of an endoscopic OCT image are discussed. After post-tuning of sample position distance, the positioning limitation between the reference reflector and the sample can be solved for various sample positions over a range of 26 mm for the cross-sectional images of a fish eye sample.

Keywords

References

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158-160 (1987). https://doi.org/10.1364/OL.12.000158
  3. K. Takad, I. Yokohama, K. Chida, and J. Noda, "New measurement system for fault location in optical waveguide devices based on an interferometric technique," Appl. Opt. 26, 1603-1606 (1987). https://doi.org/10.1364/AO.26.001603
  4. U. Sharma, N. M. Fried, and J. U. Kang, "All-fiber commonpath optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Select. Topics Quantum Electron. 11, 799-805 (2005). https://doi.org/10.1109/JSTQE.2005.857380
  5. J. U. Kang and A. Rodrigues, "Fourier domain common-path fiber OCT with tunable reference: analysis and optimization," in Proc. CLEO-QELS 2007 (Baltimore, USA, May 2007), JTuA55.
  6. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). https://doi.org/10.1364/AO.42.006953
  7. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006). https://doi.org/10.1364/OE.14.001878
  8. J. S. Park, M. Y. Jeong, C. H. Jung, C. H. Ouh, H. J. Kang, Y. G. Han, S. B. Lee, and C. S. Kim, "Flexible curled optical cord for bending-insensitive optical imaging delivery," IEEE J. Select. Topics Quantum Electron. 16, 1031-1038 (2010).
  9. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). https://doi.org/10.1364/OPEX.12.004822
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal to noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). https://doi.org/10.1364/OL.28.002067
  11. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007). https://doi.org/10.1364/OE.15.007103
  12. J. H. Lee, E. J. Jung, and C. S. Kim, "Optical coherence tomography based on a continuous-wave supercontinuum seeded by erbium-doped fiber's amplified spontaneous emission," J. Opt. Soc. Korea 14, 49-54 (2010). https://doi.org/10.3807/JOSK.2010.14.1.049
  13. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). https://doi.org/10.1364/OPEX.13.003513
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). https://doi.org/10.1364/OE.11.000889
  15. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999). https://doi.org/10.1364/OL.24.001484
  16. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183

Cited by

  1. Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging vol.19, pp.2, 2015, https://doi.org/10.3807/JOSK.2015.19.2.154