• Title/Summary/Keyword: OCT

Search Result 1,422, Processing Time 0.038 seconds

OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells

  • Choi, Sang-Hun;Kim, Jun-Kyum;Jeon, Hee-Young;Eun, Kiyoung;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.135-142
    • /
    • 2019
  • OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 ($OCT4B^{19kDa}$) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of $OCT4B^{19kDa}$ promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, $OCT4B^{19kDa}$ may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.

AMD Identification from OCT Volume Data Acquired from Heterogeneous OCT Machines using Deep Convolutional Neural Network (이종의 OCT 기기로부터 생성된 볼륨 데이터로부터 심층 컨볼루션 신경망을 이용한 AMD 진단)

  • Kwon, Oh-Heum;Jung, Yoo Jin;Kwon, Ki-Ryong;Song, Ha-Joo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.124-136
    • /
    • 2018
  • There have been active research activities to use neural networks to analyze OCT images and make medical decisions. One requirement for these approaches to be promising solutions is that the trained network must be generalized to new devices without a substantial loss of performance. In this paper, we use a deep convolutional neural network to distinguish AMD from normal patients. The network was trained using a data set generated from an OCT device. We observed a significant performance degradation when it was applied to a new data set obtained from a different OCT device. To overcome this performance degradation, we propose an image normalization method which performs segmentation of OCT images to identify the retina area and aligns images so that the retina region lies horizontally in the image. We experimentally evaluated the performance of the proposed method. The experiment confirmed a significant performance improvement of our approach.

Expression of Oct-4 in the Pregnancy of Korean Native Cattle

  • H. J. Chung;Kim, B. K.;Park, J. H.;J. H Woo;Park, M. Y.;H. H. Seong;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.51-51
    • /
    • 2003
  • Oct-4 is a maternally expressed octamer-binding protein encoded by the murine Oct-4 gene. It is present in unfertilized oocytes, but also in the inner cell mass and in primordial germ cells. In addition, Oct-4 is the first transcrition factor described that is specific for the blastocysts stage bovine embryos. The spatial and temporal expression patterns were further determined using Immunohistochemistry. With this technique Oct-4 protein expression is detected in the oocyte, in the blastocyst. After pregnancy Oct-4 expression is restricted ovary and placental tissue. Therefore Oct-4 is a transcription factor that is specifically expressed in cells participating in the pregnancy of Korean native cattle. These result suggest that Oct-4 localization and expression may contribute to the defects in the developmental normal seen in Korean native cattle.

  • PDF

Comparative Analysis of Oct4 in Different Histological Subtypes of Esophageal Squamous Cell Carcinomas in Different Clinical Conditions

  • Vaiphei, Kim;Sinha, Saroj Kant;Kochhar, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3519-3524
    • /
    • 2014
  • Background: Esophageal squamous cell carcinoma (ESCC) is a common cancer with poor prognosis. It has been hypothesized that Oct4 positive radioresistant stem cells may be responsible for tumor recurrence. Hence, we evaluated Oct4 expression in ESCC in pre-treatment, post neo-adjuvant residual and post-surgical recurrent tumours. Materials and Methods: Endoscopic mucosal biopsies were used to study Oct4 expression and the observations were correlated with histological tumor grades, patient data and clinical background. Results: All patients presented with dysphagia with male predominance and a wide age range. Majority of the patients had intake of mixed diet, history of alcohol and tobacco intake was documented in less than half of the patients. Oct 4 expression was significantly higher in poorly differentiated (PDSCC) and basaloid (BSCC) subtypes than the other better differentiated tumor morphology. Oct4 was also expressed by adjoining esophageal mucosa showing low grade dysplasia and basal cell hyperplasia (BCH). Biopsies in PDSCC and BSCC groups were more likely to show a positive band for Oct4 by polymerase chain reaction (PCR). Dysplasia and BCH mucosa also showed Oct4 positivity by PCR. All mucosal biopsies with normal morphology were negative for Oct4. Number of tissue samples showing Oct4 positivity by PCR was higher than that by the conventional immunohistochemistry (p>0.05). Oct4 expression pattern correlated only with tumor grading, not with other parameters including the clinical background or patient data. Conclusions: Our observations highlighted a possible role of Oct4 in identifying putative cancer stem cells in ESCC pathobiology and response to treatment. The implications are either in vivo existence of Oct4 positive putative cancer stem cells in ESCC or acquisition of cancer stem cell properties by tumor cells as a response to treatment given, resulting ultimately an uncontrolled cell proliferation and treatment failure.

DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos (소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Kim, Dong-Hoon;Cha, Byung-Hyun;Kim, Seong-Soo;Yang, Byoung-Chul;Im, Gi-Sun;Kim, Myong-Jik;Min, Kwan-Sik;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • DNA methylation is involved in tissue-specific gene control and essential for normal embryo development Octamer-binding transcription factor 4 (Oct-4) is one of the most important transcription factors for early differentiation. This study was performed whether the bovine Oct-4 is tissue specific or developmental dependent epigenetic mark, we investigated transcripts and the methylation status of CpGs of 5'-promoter region of Oct-4 in bovine preimplantation embryos. Oct-4 transcripts were highly detected in morula and blastocyst, while they were present low levels in sperm and 2- to 8-cell stage embryos. These results suggest that de novo expression of Oct-4 initiates at morula stage of embryogenesis. Here we determined that there is a tissue-dependent differentially methylated region (T-DMR) in the 5'-promoter region of Oct-4. The methylation status of the Oct-4 T-DMR was distinctively different in the oocyte from that in the sperm and adult somatic tissues and changed from zygote to blastocyst stage, suggesting that active methylation and demethylation occur during preimplantation development. Based on these results, the 5'-promoter region of Oct-4 gene is target for DNA methylation and the methylation status changes variously during embryonic development in bovine.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Optical Coherence Tomography Applications for Dental Diagnostic Imaging: Prototype System Performance and Preclinical Trial

  • Eun Seo Choi;Won-Jin Yi;Chang-Seok Kim;Woosub Song;Byeong-il Lee
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • An intraoral spectral domain optical coherence tomography (SD-OCT) system has been developed, using a custom-built hand-held scanner and spectrometer. The hand-held OCT probe, based on a microelectromechanical systems scanner and a self-built miniaturized drive circuit, had a field of view sufficient for dental diagnosis. The spectrometer using a fabricated f-theta lens provided the image depth required for dental diagnosis. The axial and transverse resolutions of the OCT system in air were 7.5 ㎛ and 12 ㎛ respectively. The hand-held probe could scan an area of 10 × 10 mm2, and the spectrometer could image along a depth of 2.5 mm. To verify the utility of the developed OCT system, OCT images of tooth hard and soft tissues were acquired, and a user-interface program for diagnosis was developed. Early caries and microcracks that were difficult to diagnose with existing methods could be found, and the state of restoration could be observed. Measuring the depth of the gingival sulcus, distinguishing subgingival calculus, and detecting an implant under the gingiva suggested the possibility of the SD-OCT system as a diagnostic for dental soft tissues. Through the presented OCT images, the capability of the developed SD-OCT system for dental diagnosis was demonstrated.

Obstacle Crossing Training for Improving Balance and Walking Functions After Stroke: Randomized Controlled Trial of Unaffected Limb Leads Versus Affected Limb Leads

  • Gi-Seon Ryu;Joon-Hee Lee;Duck-Won Oh
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.119-128
    • /
    • 2023
  • Purpose: Obstacle crossing training is being used to improve the walking ability of stroke patients, but studies on which method is more effective when performing obstacle crossing training with an unaffected limb lead (OCT-ULL) and an affected limb lead (OCT-ALL) are not well known. As such, this study aims to compare the intervention effects of obstacle crossing training using unaffected limb leads (OCT-ULL) and obstacle crossing training using affected limb leads (OCT-ALL). Methods: In total, 25 patients with chronic stroke were studied and assigned randomly to the obstacle crossing training with unaffected limb leads (OCT-ULL) group or the obstacle crossing training with affected limb leads (OCT-ALL) group. A lower extremity strength test, balance and gait test, and fall efficacy test were conducted as preliminary tests, and all patients participated in the intervention for 30 minutes a day, five days a week for four weeks, and the same preliminary tests were conducted post-intervention. Results: Compared with the OCT-ALL group, the OCT-ULL group showed a significant improvement in the strength of the affected hip abductor muscle and in balance and gait, as well as in fall efficacy (p<.05). Conclusion: This study suggested that applying the OCT-ULL training method in the obstacle crossing training of stroke patients is more effective for improving balance and gait functions than OCT-ALL.

OCT Resolution Enhancement with EDF as Absorber (EDF 흡수체를 이용한 OCT 분해능의 향상)

  • 최은서;김진채;김영재;이병하
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.246-247
    • /
    • 2002
  • OCT(Optical Coherence Tomography)는 실시간에 생체의 단면을 절개하지 않고도 고해상도의 단층 이미지를 얻을 수 있다는 장점을 지니고 있다. 이러한 면에서 OCT는 현재 사용되고 있는 여러 image modality들의 낮은 분해능을 해결할 수 있는 진보된 대안으로 각광을 받고 있다. 최근 OCT에서 가능한 이미지의 분해능은 수 $\mu$m 정도까지 보고되고 있다. (1) 이러한 OCT의 분해능은 사용하는 광원에 의해서 결정된다. (중략)

  • PDF

Transcriptional Regulation of Human Nanog Gene by OCT4 and SOX2 (OCT4와 SOX2에 의한 인간 Nanog 유전자의 전사 조절)

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self-renewal requires many factors such as OCT4, SOX2, and NANOG. It is previously known that OCT4 and SOX2 can bind to NANOG promoter and support Nanog gene expression in mouse ES cells by the detailed studies using the mouse Nanog promoter. Here, we constructed serial deletion mutant promoter-reporter constructs to investigate the human Nanog gene promoter in detail. The highest promoter activity was obtained in the 0.6 kb (-253/+365) promoter-reporter construct which includes the binding sites of OCT4 and SOX2. To further confirm contribution of OCT4 and SOX2 in Nanog gene expression, we introduced site- directed mutation(s) in the OCT4 and/or SOX2 binding sites of the human Nanog promoter 0.6 kb (-253/+365) and checked the influence of the mutation on the promoter activity using human EC cell line NCCIT. Mutation either in OCT4 binding site or SOX2 binding site significantly reduced the activity of Nanog promoter which directly confirmed that OCT4 and SOX2 binding is essential in human Nanog gene expression.