DOI QR코드

DOI QR Code

Precise Analysis of the Surface Oxidation Layer on Cu Powders Using FE-TEM Techniques

전계방출 투과전자현미경 분석기술을 이용한 Cu 입자 표면산화층의 정밀평가

  • Lee, Tae Hun (Measurement & Analysis Team, National Nanofab Center,Department of Nanomaterials Engineering, Chungnam National University) ;
  • Yoo, Jung Ho (Measurement & Analysis Team, National Nanofab Center) ;
  • Hyun, Moon Seop (Measurement & Analysis Team, National Nanofab Center) ;
  • Yang, Jun-Mo (Measurement & Analysis Team, National Nanofab Center) ;
  • Seong, Mi-Ryn (Division of Metallurgy and Materials Engineering, Hanyang University) ;
  • Kwon, Jinhyeong (Division of Metallurgy and Materials Engineering, Hanyang University) ;
  • Lee, Caroline Sunyong (Division of Metallurgy and Materials Engineering, Hanyang University) ;
  • Kim, Jeong-Sun (The 4th R&D institute-4, Agency for Defense Development) ;
  • Baik, Kyeong Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 이태훈 (나노종합팹센터 특성평가팀,충남대학교 나노소재공학과) ;
  • 유정호 (나노종합팹센터 특성평가팀) ;
  • 현문섭 (나노종합팹센터 특성평가팀) ;
  • 양준모 (나노종합팹센터 특성평가팀) ;
  • 성미린 (한양대학교 재료공학과) ;
  • 권진형 (한양대학교 재료공학과) ;
  • 이선영 (한양대학교 재료공학과) ;
  • 김정선 (국방과학연구소 4본부 4부) ;
  • 백경호 (충남대학교 나노소재공학과)
  • Received : 2009.07.30
  • Published : 2010.01.20

Abstract

Nanosized surface structures of Cu powders were investigated at the atomic scale by field-emission transmission electron microscope techniques. The nanoscale surface oxide layer on the Cu powder was analyzed to be the $CU_2O$ phase by electron diffraction pattern and electron energy-loss spectroscopy. In addition, it was found from high-resolution transmission electron microscopy study that there are formed no surface oxide layers on the surface of alkanethiol coated Cu powders.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. K. L. Klug, V. P. Dravid, and D. L. Johnson, J. Mater. Res. 18, 988 (2003) https://doi.org/10.1557/JMR.2003.0135
  2. N. A. Dhas, C. P. Faj, and A. Fedanken, Chem. Mater. 10, 1446 (1998) https://doi.org/10.1021/cm9708269
  3. Y.-H. Guo, B.-B. Jiang, J.-Z. Chen, and S.-J. Zhang, Surface & Coatings Technology 202, 555 (2007) https://doi.org/10.1016/j.surfcoat.2007.06.062
  4. S. Poulston, P. M. Parleu, P. Stone, and M. Bowker, Surface and Interface Analysis 24, 811 (1996) https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
  5. J.-W. Lim, J. Iijima, Y. Zhu, J. H. Yoo, G.-S. Choi, K. Mimura, and M. Isshiki, Thin Solid Films 516, 4040 (2008) https://doi.org/10.1016/j.tsf.2007.12.159
  6. J.-M. Yang, J.-C. Park, Y.-B. Park, J.-J. Kim, T.-S. Back, H.-S. Lee, S.-Y. Lee, and S.-W. Park, Journal of Electron Microscopy 52, 305 (2003) https://doi.org/10.1093/jmicro/52.3.305
  7. K. H. Kim, J. M. Yang, C. W. Ahn, H. S. Seo, I.-S. Kang, and W.-J. Hwang, J. Kor. Inst. Met. & Mater. 46, 458 (2008)
  8. M. M. Disko, C. C. Ahn, and B. Fultz, Transmission Electron Energy Loss Spectrometry in Materials Science, p. 264-265, A Publication of The Minerals, Metals & Materials Society (1992)