• 제목/요약/키워드: surface oxidation

검색결과 2,190건 처리시간 0.032초

표면조도에 따른 원자로급 흑연(IG110)의 산화거동 (Oxidation Behavior of Nuclear Graphite(IG110) with Surface Roughness)

  • 조광연;김경자;임연수;지세환
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.613-618
    • /
    • 2006
  • Graphite is suitable materials as a moderator, reflector, and supporter of a nuclear reactor because of high tolerance to the high temperature and neutron irradiations. Because graphite is so weak to the oxidation, its oxidation study is essentially demanded for the operation and design of the nuclear reactor. This work focuses on the effect of the surface oxidation of graphite according to the surface treatment. With thermogravimeter (TG), oxidation characteristics of the isotropic graphite are measured at the three temperature areas, and oxidation ratio and amounts are estimated as changing the surface roughness. Furthermore, the polished graphite surface produced fom the surface treatment is investigated with the Raman spectroscopic study. Oxidation behaviors of the surface are also evaluated as elimination the polished layer by washing with strong sonication.

표면산화 처리된 흡착제의 Benzene 및 MEK 흡착 특성 - HNO3, H2SO4 및 (NH4)2S2O8에 의한 표면산화- (Adsorption Characteristics of Benzene and MEK on Surface Oxidation Treated Adsorbent -Surface Oxidation by HNO3, H2SO4 and (NH4)2S2O8-)

  • 심춘희;이우근
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2006
  • The objective of this research is to improve the adsorption capacity of adsorbent made from MSWI (Municipal Solid Waste Incinerator) fly ash by surface oxidation. Used oxidation agents were $HNO_{3}$, $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$. These agents can modify the surface property of an adsorbent such as specific surface area, pore volume, and functional group. The surface structure was studied by BET method with $N_{2}$ adsorption. The acid value and base value were determined by Boehm's method. The adsorption properties were investigated with benzene and MEK (Methylethylketone). According to the results, the specific surface area of the adsorbent was increased from 309.2 $m^{2}$/g to 553.2 $m^{2}$/g by $HNO_{3}$ oxidation. But $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$ oxidation was decreased slightly. After Oxidation, surface acid value increased, but base value decreased. FAA-N shows the highest acid value. The content of oxygen increased greatly and oxygen group was created on the adsorbent surface. The surface oxidation improved the adsorbing capacity for MEK. The amount of adsorbing MEK was increased from 189 $m^{2}$/g to 639 $m^{2}$/g by $HNO_{3}$ oxidation.

Alloy 600의 결정립계 산화에 대한 표면 변형의 영향 (Effects of Surface Deformation on Intergranular Oxidation of Alloy 600)

  • 하동욱;임연수;김동진
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.138-145
    • /
    • 2020
  • Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.

Oxidation Behaviors of Porous Ferritic Stainless Steel Support for Metal-supported SOFC

  • Moon, I.J.;Lee, J.W.;Cho, H.J.;Choi, G.M.;Sohn, H.K.
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Recently porous metal has been used as supporting metal in planar type SOFC. In order to search optimum alloys for porous metal support and estimate the stability of metal-supported SOFC at high temperature, it is necessary to investigate the oxidation behaviors of porous material for metal support in comparison with dense material. Oxidation tests of porous and dense stainless steels were conducted at $600^{\circ}C$ and $800^{\circ}C$. Since the specific surface area of porous material is much larger than that of dense material, surface area should be considered in order to compare the oxidation rate of porous stainless steel with that of dense stainless steel. The specific surface area of porous body was measured using image analyzer. The weight gain of porous stainless steel was much greater than those of dense stainless steels due to its larger specific surface area. considering the specific surface area, the oxidation rate of porous stainless steel is likely to be the same as that of dense stainless steel with the same surface area. The change in chromium content in stainless steel during oxidation was also investigated. The experimental result in chromium content in stainless steel during oxidation corresponded with the calculated value. While the change in chromium content in dense stainless steel during oxidation is negligible, chromium content in porous stainless steel rapidly decreases with oxidation time due to its large specific surface area. The significant decrease in chromium content in porous stainless steel during oxidation may affect the oxidation resistance of porous stainless steel support and long term stability of metal-supported SOFC.

Initial oxidation process on viinal Si(001) surface: ReaxFF based on molecular dynamics simulation

  • 윤경한;이응관;최희채;황유빈;윤근섭;김병현;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.300-300
    • /
    • 2011
  • Si oxidation is a key process in developing silicon devices, such as highly integrated metal-oxide-semiconductor (MOS) transistors and antireflection-coating (ARC) on solar cell substrate. Many experimental and theoritical studies have been carried out for elucidating oxidation processes and adsorption structure using ab initio total energy and electronic structure calcultaions. However, the initial oxidation processes at step edge on vicinal Si surface have not been studied using the ReaxFF reactive force field. In this work, strucutural change, charge distribution of oxidized Si throughout the depth from Si surface were observed during oxidation processes on vicinal Si(001) surface inclined by $10.5^{\circ}$ of miscut angle toward [100]. Adsorption energys of step edge and flat terrace were calculated to compare the oxidation reaction at step edge and flat terrace on Si surface.

  • PDF

Ti-33.8wt% Al 금속간 화합물의 고온 산화거동 (High temperature oxidation behavior of Ti-33.8wt% Al intermetallic compounds)

  • 최송천;조현준;이동복
    • 한국표면공학회지
    • /
    • 제26권5호
    • /
    • pp.235-244
    • /
    • 1993
  • The oxidation behavior of a two-phase(Ti3Al+TiAl) intermetallic compound, Ti-33.8wt%Al, has been in-vestigated in air at 800, 900 and $^1000{\circ}C$. Though the isothermal oxidation behavior followed a parabolic law up to 100$0^{\circ}C$ indicating that protective oxide scales were formed, the cyclic oxidation behavior followed a lin-ear law in the entire temperature range tested because flaky or stratified scales were usually spalled from the surface during cooling. During oxidation at 80$0^{\circ}C$, the alloy showed excellent oxidation resistance because continuous protective Al2O3 films were formed on the outermost surface of the alloy. However, above $900^{\circ}C$, the oxidation resistance of the alloy was decreased gradually because relatively non-protective TiO2 scales as well as some of Al2O3 scales were formed on the outer oxide scale. The oxidation mechanism of the alloy at different temperature was proposed.

  • PDF

Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동 (Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings)

  • 김정욱;전준하;조건;김광호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

금속의 양극산화처리 기술 (Anodic Oxidation Treatment Methods of Metals)

  • 문성모
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

진공 플라즈마 용사법을 통해 형성된 NiCoCrAlY 오버레이 코팅의 반복 산화 거동 (Cyclic Oxidation Behavior of Vacuum Plasma Sprayed NiCoCrAlY Overlay Coatings)

  • 유연우;남욱희;박훈관;박영진;이성훈;변응선
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.283-288
    • /
    • 2019
  • MCrAlY overaly coatings are used as oxidation barrier coatings to prevent degradation of the underlying substrate in high temperature and oxidizing environment of the hot section of gas turbines. Therefore, oxidation resistance in high temperature is important property of MCrAlY coatings. Also, coefficients of thermal expansion (CTE) of MCrAlY have middle value of that of Ni-based superalloys and oxides, which have the effect of preventing the delamination of the surface oxides. Cyclic oxidation test is one of the most useful methods for evaluating the high temperature durability of coatings used in gas turbines. In this study, NiCoCrAlY overlay coatings were formed on Inconel 792(IN 792) substrates by vacuum plasma spraying process. Vacuum plasma sprayed NiCoCrAlY coatings and IN 792 susbstrates were exposed to 1000℃ one-hour cyclic oxidation environment. NiCoCrAlY coatings showed lower weight gain in short-term oxidation. In long-term oxidation, IN 792 substrates showed higher weight loss due to delamination of surface oxide but NiCoCrAlY coatings showed lower weight loss. X-ray diffraction (XRD) analysis showed α-Al2O3 and NiCr2O4 was formed during the cyclic oxidation test. Through cross-section observation using scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) analysis, thermally grown oxide (TGO) layer composed of α-Al2O3 and NiCr2O4 was formed and the thickness of TGO increased during 1000℃ cyclic oxidation test. β phase in upper side of NiCoCrAlY coating was depleted due to oxidation of Al and outer beta depletion zone thickness also increased as the cyclic oxidation time increased.