DOI QR코드

DOI QR Code

Electrochemical Performances of Lithium-air Cell with Carbon Materials

  • Park, C.K. (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Park, S.B. (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Lee, S.Y. (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Lee, H. (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Jang, H. (Department of Materials Science and Engineering, Korea University) ;
  • Cho, W.I. (Advanced Battery Center, Korea Institute of Science and Technology)
  • Received : 2010.08.14
  • Accepted : 2010.09.08
  • Published : 2010.11.20

Abstract

This study investigates the requirements of lithium-air cathodes, which directly influence discharge capacity. The cathodes of Li-air cell are made by using five different carbon materials, such as Ketjen black EC600JD, Super P, Ketjen black EC300JD, Denka black, and Ensaco 250G. The Ketjen black EC600JD provides discharge capacity of 2600 mAh/g per carbon weight, while that of Ensaco 250G shows only 579 mAh/g. To figure out the differences of discharge capacity from carbon materials, their surface area and pore volume are analyzed. These are found out to be the critical factors in determining discharge capacity. Furthermore, carbon loading on Ni foam and amounts of electrolyte are significant factors that affect discharge capacity. In order to investigate catalyst effect, electrolytic manganese dioxide (EMD) is incorporated and delivered 4307 mAh/g per carbon weight. This infers that EMD facilitates to break $O_2$ interactions and leads to enhance discharge capacity.

Keywords

References

  1. Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. https://doi.org/10.1149/1.1836378
  2. Read, J. J. Electrochem. Soc. 2002, 149, A1190. https://doi.org/10.1149/1.1498256
  3. Beattie, S. D.; Masolescu, D. M.; Blair, S. L. J. Electrochem. Soc. 2009, 156, A44. https://doi.org/10.1149/1.3005989
  4. Kowalczk, I. Read, J.; Salomon, M. Pure Appl. Chem. 2007, 79, 851. https://doi.org/10.1351/pac200779050851
  5. Read, J. J. Electrochem. Soc. 2006, 153, A96. https://doi.org/10.1149/1.2131827
  6. Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Angew. Chem. Int. 2008, 47, 4521. https://doi.org/10.1002/anie.200705648
  7. Ogasawara, T.; Debart, A.; Holzapfel, M.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. https://doi.org/10.1021/ja056811q
  8. Kuboki, T. Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. https://doi.org/10.1016/j.jpowsour.2005.03.082
  9. Zhang, S. S.; Foster, D.; Read, J. J. Power Sources 2010, 195, 1235. https://doi.org/10.1016/j.jpowsour.2009.08.088
  10. Tran, C.; Yang, X. Q.; Qu, D. J. Power Sources 2010, 195, 2057. https://doi.org/10.1016/j.jpowsour.2009.10.012

Cited by

  1. Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries vol.133, pp.47, 2011, https://doi.org/10.1021/ja208608s
  2. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries vol.4, pp.8, 2011, https://doi.org/10.1039/c1ee01496j
  3. Lithium-Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint vol.2, pp.7, 2012, https://doi.org/10.1002/aenm.201200020
  4. Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries vol.22, pp.17, 2012, https://doi.org/10.1002/adfm.201200403
  5. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery vol.15, pp.28, 2013, https://doi.org/10.1039/c3cp50930c
  6. The development and challenges of rechargeable non-aqueous lithium–air batteries vol.4, pp.1, 2013, https://doi.org/10.1080/19475411.2012.659227
  7. Key scientific challenges in current rechargeable non-aqueous Li–O2 batteries: experiment and theory vol.16, pp.24, 2014, https://doi.org/10.1039/c4cp01309c
  8. A novel monoclinic manganite/multi-walled carbon nanotubes composite as a cathode material of lithium-air batteries vol.59, pp.24, 2014, https://doi.org/10.1007/s11434-014-0396-1
  9. Batteries vol.9, pp.9, 2014, https://doi.org/10.1002/asia.201402191
  10. Demonstration of highly efficient lithium–sulfur batteries vol.3, pp.8, 2015, https://doi.org/10.1039/C4TA06641C
  11. Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery vol.39, pp.8, 2015, https://doi.org/10.5916/jkosme.2015.39.8.838
  12. A review of cathode materials and structures for rechargeable lithium–air batteries vol.8, pp.8, 2015, https://doi.org/10.1039/C5EE00838G
  13. Lithium-Sulfur Batteries with High Rate and Cycle Performance by using Multilayered Separators coated with Ketjen Black vol.5, pp.4, 2016, https://doi.org/10.1002/ente.201600411
  14. Carbon-Based Electrodes for Lithium Air Batteries: Scientific and Technological Challenges from a Modeling Perspective vol.2, pp.10, 2013, https://doi.org/10.1149/2.012310jss
  15. Optimization of Catalytically Active Sites Positioning in Porous Cathodes of Lithium/Air Batteries Filled with Different Electrolytes vol.162, pp.14, 2015, https://doi.org/10.1149/2.0861514jes
  16. Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries vol.56, pp.12, 2010, https://doi.org/10.1016/j.electacta.2011.02.072
  17. 리튬-공기전지용 탄소/망간산화물 복합구조 공기극의 전기화학적 특성 vol.15, pp.3, 2010, https://doi.org/10.5229/jkes.2012.15.3.198
  18. The impact of nano-scaled materials on advanced metal-air battery systems vol.2, pp.4, 2010, https://doi.org/10.1016/j.nanoen.2012.11.016
  19. Electrochemical performance of surface modified CNF/Co3O4 composite for Li-air batteries vol.33, pp.3, 2014, https://doi.org/10.1007/s10832-014-9957-6
  20. Influence of carbon pore size on the discharge capacity of Li-O2batteries vol.2, pp.31, 2010, https://doi.org/10.1039/c4ta01745e
  21. The First Introduction of Graphene to Rechargeable Li–CO2 Batteries vol.127, pp.22, 2015, https://doi.org/10.1002/ange.201501214
  22. The First Introduction of Graphene to Rechargeable Li–CO2 Batteries vol.54, pp.22, 2010, https://doi.org/10.1002/anie.201501214
  23. Advances in Manganese‐Based Oxides Cathodic Electrocatalysts for Li–Air Batteries vol.28, pp.15, 2010, https://doi.org/10.1002/adfm.201704973
  24. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization vol.54, pp.3, 2010, https://doi.org/10.1021/acs.accounts.0c00772