References
- Filler, M. A.; Bent, S. F. Prog. Surf. Sci. 2003, 73, 1. https://doi.org/10.1016/S0079-6816(03)00035-2
- Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665-668. https://doi.org/10.1038/35015043
- Goede, K.; Busch, P.; Grundmann, M. Nano. Lett. 2004, 4, 2115-2120. https://doi.org/10.1021/nl048829p
- Loscutoff, P. W.; Bent, S. F. Annu. Rev. Phys. Chem. 2006, 57, 467-495. https://doi.org/10.1146/annurev.physchem.56.092503.141307
- Ardalan, P.; Davani, N.; Musgrave, C. B. J. Phys. Chem. C 2007, 111, 3692-3699. https://doi.org/10.1021/jp0647131
- Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413. https://doi.org/10.1146/annurev.physchem.50.1.413
- Hamers, R. J.; Coulter, S. K.; Ellison, M. D.; Hovis, J. S.; Padowitz,D. F.; Schwartz, M. P.; Greenlief, C. M.; Russell, J. N. Acc. Chem. Res. 2000, 33, 617. https://doi.org/10.1021/ar970281o
- Gao, F.; Li, Z.; Wang, Y.; Burkholder, L.; Tysoe, W. T. J. Phys. Chem. C 2007, 111, 9981-9991. https://doi.org/10.1021/jp071943m
- Zhao, X.; Yan, H.; Zhao, R. G.; Yang, W. S. Langmuir 2003, 19, 809-813. https://doi.org/10.1021/la0267037
- Feyer, V.; Plekan, O.; Skála, T.; Cháb, V.; Matolín, V.; Prince, K. C. J. Phys. Chem. B 2008, 112, 13655-13660. https://doi.org/10.1021/jp805671h
- Youn, Y.-S.; Jung, S.-J.; Lee, H.; Kim, S. Langmuir 2009, 25, 7438. https://doi.org/10.1021/la9003565
- Lee, H.; Youn, Y.-S.; Kim, S. Langmuir 2009, 25, 12574 https://doi.org/10.1021/la901914n
- Youn, Y.-S.; Lee, H.; Kim, S. Chem. Phys. Chem. 2010, 11, 354
- Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1. https://doi.org/10.1016/j.progsurf.2003.12.001
- Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F. Nat. Mater. 2003, 2, 577. https://doi.org/10.1038/nmat964
- Zubavichus, Y.; Zharnikov, M.; Yang, Y.; Fuchs, O.; Heske, C.; Umbach, E.; Tzvetkov, G.; Netzer, F. P.; Grunze, M. J. Phys. Chem. B 2005, 109, 884. https://doi.org/10.1021/jp047626m
- Xue, G.; Dong, J.; Sun, Y. Langmuir 1994, 10, 1477. https://doi.org/10.1021/la00017a026
- Schreier, F. J. Quant. Spectros. Radiat. Transfer. 1992, 48, 743-762. https://doi.org/10.1016/0022-4073(92)90139-U
- Landmark, E.; Karlsson, C. J.; Johansson, L. S. O.; Uhrberg, R. I. G. Phys. Rev. B 1994, 49, 16523-16533. https://doi.org/10.1103/PhysRevB.49.16523
- Jung, S. J.; Youn, Y.-S.; Lee, H.; Kim, K.-J.; Kim, B.; Kim, S. J. Am. Chem. Soc. 2008, 130, 3288-3289. https://doi.org/10.1021/ja7112307
Cited by
- Variation of Coverage-Dependent Attachment of Multifunctional Groups in Alanine and Leucine to the Ge(100)-2×1 Surface: Bonding Configuration and Adsorption Stability vol.115, pp.39, 2011, https://doi.org/10.1021/jp206442s
- Adsorption of Histidine and a Histidine Tripeptide on Au(111) and Au(110) from Acidic Solution vol.116, pp.43, 2012, https://doi.org/10.1021/jp307463z
- Comparison and Contrast Analysis of Adsorption Geometries of Phenylalanine versus Tyrosine on Ge(100): Effect of Nucleophilic Group on the Surface vol.116, pp.49, 2012, https://doi.org/10.1021/jp3086039
- Adsorption Sequence of Multifunctional Groups: A Study on the Reaction Pathway and the Adsorption Structure of Homocysteine on the Ge(100) Surface vol.14, pp.11, 2013, https://doi.org/10.1002/cphc.201300124
- Confirmation of the coexistence of two tautomers of 2-mercaptothiazoline on the Ge(100) surface vol.15, pp.39, 2013, https://doi.org/10.1039/c3cp52760c
- Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface vol.121, pp.38, 2017, https://doi.org/10.1021/acs.jpcc.7b07691
- Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures vol.35, pp.2, 2010, https://doi.org/10.5012/bkcs.2014.35.2.581