References
- Tritt, T. M. Science 1999, 283, 804. https://doi.org/10.1126/science.283.5403.804
- Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Science 2002, 297, 2229. https://doi.org/10.1126/science.1072886
- Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. https://doi.org/10.1038/nature06381
- Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Science 2007, 315, 351. https://doi.org/10.1126/science.1136494
- Tsai, H.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1997, 9, 879.
- Bolgar, A. S.; Trofimova, Z. A.; Yanaki, A. A. Powder Metall. Met. Ceram. 1990, 29, 382.; Blinder, A. V.; Bolgar, A. S.; Trofimova, Z. A. Powder Metall. Met. Ceram. 1993, 32, 234.
- Dungey, K. E.; Curtis, M. D.; Penner-Hahn, J. E. Chem. Mater. 1998, 10, 2152; Heising, J.; Kanatzidis, M. G. J. Amer. Chem. Soc. 1999, 121, 11720. https://doi.org/10.1021/ja991644d
Cited by
- Enhanced thermoelectric properties of tungsten disulfide-multiwalled carbon nanotube composites vol.22, pp.40, 2012, https://doi.org/10.1039/c2jm34510b
- Two-Dimensional Molybdenum Trioxide and Dichalcogenides vol.23, pp.32, 2013, https://doi.org/10.1002/adfm.201300125
- 2D Crystals vol.7, pp.2, 2013, https://doi.org/10.1021/nn303973r
- As an Excellent High-Temperature Thermoelectric Material vol.26, pp.22, 2014, https://doi.org/10.1021/cm503487n
- Characterization of Cu(In,Ga)Se$_{2}$ Electrodeposited and Co-Evaporated Devices by Means of Concentrated Illumination vol.4, pp.2, 2014, https://doi.org/10.1109/JPHOTOV.2013.2293889
- Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition vol.5, pp.2041-1723, 2014, https://doi.org/10.1038/ncomms4087
- Q-switched fiber laser based on transition metal dichalcogenides MoS_2, MoSe_2, WS_2, and WSe_2 vol.23, pp.20, 2015, https://doi.org/10.1364/OE.23.026723
- Using Refined Optothermal Raman Technique vol.7, pp.46, 2015, https://doi.org/10.1021/acsami.5b08580
- Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets vol.10, pp.5, 2016, https://doi.org/10.1021/acsnano.5b03114
- Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air vol.28, pp.30, 2016, https://doi.org/10.1002/adma.201601151
- Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping vol.4, pp.26, 2016, https://doi.org/10.1039/C6TA03122F
- Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy vol.5, pp.8, 2017, https://doi.org/10.1063/1.4999225
- Effect of anion and cation substitution in tungsten disulfide and tungsten diselenide on conductivity and thermoelectric power vol.51, pp.6, 2017, https://doi.org/10.1134/S1063782617060288
- Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery vol.7, pp.11, 2017, https://doi.org/10.1002/aenm.201602567
- Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors vol.9, pp.4, 2017, https://doi.org/10.1007/s40820-017-0152-6
- Tunable electron and phonon properties of folded single-layer molybdenum disulfide pp.1998-0000, 2018, https://doi.org/10.1007/s12274-017-1770-5
- Enhanced thermal transport across monolayer MoS2 pp.1998-0000, 2017, https://doi.org/10.1007/s12274-017-1835-5
- WS2-Clad Microfiber Saturable Absorber for High-Energy Rectangular Pulse Fiber Laser vol.24, pp.3, 2018, https://doi.org/10.1109/JSTQE.2017.2757142
- vol.23, pp.1, 2014, https://doi.org/10.1088/1674-1056/23/1/017201
- Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect vol.116, pp.23, 2014, https://doi.org/10.1063/1.4904513
- Tungsten diselenide Q-switched erbium-doped fiber laser vol.55, pp.8, 2016, https://doi.org/10.1117/1.OE.55.8.081306
- Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures vol.7, pp.1, 2017, https://doi.org/10.1038/srep46211
- saturable absorber vol.15, pp.8, 2018, https://doi.org/10.1088/1612-202X/aac29e
- (X: S, Se and Te) nanoscrolls vol.10, pp.17, 2018, https://doi.org/10.1039/C7NR08634B
- Phonon scattering processes in molybdenum disulfide vol.114, pp.5, 2019, https://doi.org/10.1063/1.5082932
- An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets vol.124, pp.36, 2012, https://doi.org/10.1002/ange.201204208
- An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets vol.51, pp.36, 2012, https://doi.org/10.1002/anie.201204208
- High pressure effect on structure, electronic structure, and thermoelectric properties of MoS2 vol.113, pp.1, 2010, https://doi.org/10.1063/1.4772616
- Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 vol.89, pp.3, 2010, https://doi.org/10.1103/physrevb.89.035438
- Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors (4 pages) vol.104, pp.17, 2014, https://doi.org/10.1063/1.4872002
-
Experimental Evidence for Dark Excitons in Monolayer
$ \mathrm{WSe}_{2}$ vol.115, pp.25, 2010, https://doi.org/10.1103/physrevlett.115.257403 - Thermal conductivity of bulk and monolayer MoS 2 vol.113, pp.3, 2016, https://doi.org/10.1209/0295-5075/113/36002
- Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers vol.94, pp.1, 2010, https://doi.org/10.1103/physrevb.94.014312
- Thermoelectric properties of WS2nanotube networks vol.10, pp.1, 2010, https://doi.org/10.7567/apex.10.015001
- Control of Electrical and Thermal Transport Properties by Hybridization of Two-Dimensional Tungsten Disulfide and Reduced Graphene Oxide for Thermoelectric Applications vol.6, pp.11, 2010, https://doi.org/10.1021/acssuschemeng.8b03949
-
Thermal Conductivity Enhancement in
$ \mathrm{MoS}_{2}$ under Extreme Strain vol.122, pp.15, 2010, https://doi.org/10.1103/physrevlett.122.155901 - Quasi-Ballistic Thermal Transport Across MoS2 Thin Films vol.19, pp.4, 2010, https://doi.org/10.1021/acs.nanolett.8b05174
- Phonon Anharmonicity of Tungsten Disulfide vol.123, pp.41, 2019, https://doi.org/10.1021/acs.jpcc.9b07553
- The valley Nernst effect in WSe2 vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-13590-8
- Enhanced Thermoelectric Properties of WS2/Single-Walled Carbon Nanohorn Nanocomposites vol.10, pp.2, 2010, https://doi.org/10.3390/cryst10020140
- Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors vol.14, pp.2, 2020, https://doi.org/10.1021/acsnano.9b09839
- Thermoelectric Properties of Monolayer MoS2 in the Presence of Magnetic Field and Electron/Hole Doping by Using the Holstein Model vol.9, pp.7, 2010, https://doi.org/10.1149/2162-8777/abb28b
- Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors vol.13, pp.1, 2021, https://doi.org/10.1007/s40820-021-00724-1
- Interface driven energy-filtering and phonon scattering of polyaniline incorporated ultrathin layered molybdenum disulphide nanosheets for promising thermoelectric performance vol.584, pp.None, 2010, https://doi.org/10.1016/j.jcis.2020.09.061
-
Thermal conductivity of the quasi-one-dimensional materials
$ \mathrm{TaSe}_{3}$ and$ \mathrm{ZrTe}_{3}$ vol.5, pp.3, 2010, https://doi.org/10.1103/physrevmaterials.5.034010 - Thermal conductivity of short tungsten disulfide nanotubes: A molecular dynamics study vol.129, pp.23, 2010, https://doi.org/10.1063/5.0054657
- Boosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au6 Clusters vol.4, pp.11, 2010, https://doi.org/10.1021/acsaem.1c01777
- Induced 2H-Phase Formation and Low Thermal Conductivity by Reactive Spark Plasma Sintering of 1T-Phase Pristine and Co-Doped MoS2 Nanosheets vol.6, pp.48, 2021, https://doi.org/10.1021/acsomega.1c04646