Effect of Low Frequency Electrical Stimulation on VEGF Expression of Suspension Induced Atrophic Muscle

뒷다리 현수 유도 위축근에 대한 저빈도 전기자극의 VEGF 발현에 미치는 영향

  • Kang, Jong-Ho (Department of Physical Therapy, Nambu University) ;
  • Han, Jong-Man (Department of Physical Therapy, Chunnam College)
  • 강종호 (남부대학교 물리치료학과) ;
  • 한종만 (전남과학대학 물리치료과)
  • Received : 2010.03.31
  • Accepted : 2010.05.24
  • Published : 2010.05.31

Abstract

Purpose : The purpose of this experiment was to evaluate the pre-application effect of low frequency electrical stimulation(LFES) on VEGF expression of atrophic muscle and to determine the optimal pre-application period of LFES for prevent muscle atropy Methods : Twenty-five adult sprague-dawley rats were randomly assigned to weight bearing group, hindlimb suspension for 14 days group, hindlimb suspension with pre-application of LFES for 14 days group, hindlimb suspension with pre-application of LFES for 11 dsys group and, hindlimb suspension with pre-application LFES for 7 dsys group. 16Hz of Biphasic pulse current was applied to gastrocnemius for 15min per days. Results : VEGF were decreased expression in HSG groups, whereas VEGF were significantly increased in HS+ES14G, HS+ES11G, HS+ES7G groups Conclusion : LFES during the hindlimb suspension showed a positive effect in VEGF induction and early application is strongly encourage VEGF induction. This indicated that pre-application of LFES could prevent muscle atrophy.

Keywords

References

  1. 남기원. 신경근전기자극과 수중운동이 흰쥐 위축근신경근연접부의 연접재형성에 미치는 영향. 대구대학교 대학원 박사학위 논문. 2003.
  2. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med. 1997; 18(3):157-60. https://doi.org/10.1055/s-2007-972612
  3. Ashley Z, Salmons S, Boncompagni S. et al. Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell Motil. 2007;28(4-5):203-7. https://doi.org/10.1007/s10974-007-9119-4
  4. Baldwin KM, Haddad F. Skeletal Muscle Plasticity. Cellular and Molecular Responses to Altered Physical Activity Paradigms. Am J Phys Med Rehabil. 2002;81:40-51. https://doi.org/10.1097/00002060-200201000-00007
  5. Bayol S, Brownson C, Loughna, PT. Electrical stimulation modulates IGF binding protein transcript levels in C2C12 myotubes. Cell Biochem. Funct., 2005;23(5):361-5. https://doi.org/10.1002/cbf.1118
  6. Boonyarom O, Inui K. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol(Oxf). 2006;188(2):77-89. https://doi.org/10.1111/j.1748-1716.2006.01613.x
  7. Borisov AB, Huang SK, Carlson BM. Remodeling of the vascular and progressive loss of capillaries in denervated skeletal muscle. Anat Rec. 2000; 258(3):292-304. https://doi.org/10.1002/(SICI)1097-0185(20000301)258:3<292::AID-AR9>3.0.CO;2-N
  8. Brown M, Taylor R. Prehabilitation and rehabilitation for attenuating hindlimb unweighting effects on skeletal muscle and gait in adult and old rats. Arch Physic Med and Rehab. 2005;86(12):2261-9. https://doi.org/10.1016/j.apmr.2005.06.020
  9. Bruno C, Eric B, Kristina C, et al. Hindlimb unweighting for 2 weeks alters physiological properties of rat hindlimb motoneurones. J Physiol. 2005;.568(3), 841-50. https://doi.org/10.1113/jphysiol.2005.091835
  10. Canton F, Bigard AX, Merino D, et al. Effects of chronic low frequency stimulation on structural and metabolic properties of hindlimb suspended rat soleus muscle. Eur J Appl Physiol. Occup. Physiol. 1995;70(6):528-35. https://doi.org/10.1007/BF00634382
  11. D'Antona G, Lanfranconi F, Pellegrino MA, et al. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol. 2006;570(3):611-27.
  12. Desaphy JF, Pierno S, Liantonio A, et al. Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiol Dis. 2005 Mar;18(2):356-65. https://doi.org/10.1016/j.nbd.2004.09.016
  13. Dupont Salter AC, Richmond FJ, Loeb GE. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats. IEEE Trans Neural Syst Rehabil Eng. 2003;Sep;11(3):218-26. https://doi.org/10.1109/TNSRE.2003.817674
  14. Ground MD. Towards understanding skeletal muscle regeneration. Path Res and Prac. 1991;187(1):1-22. https://doi.org/10.1016/S0344-0338(11)81039-3
  15. Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Ann Rev Neurosci. 2001;24:677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
  16. Hudlicka O, Graciotti L, Fulgenzi G, et al. The effect of chronic skeletal muscle stimulation on capillary growth in the rat: are sensory nerve fibres involved? J Physiol. 2003;546:813-22. https://doi.org/10.1113/jphysiol.2002.030569
  17. Hurst JE, Fitts RH. Hindlimb unloading-induced muscle atrophy and loss of function: protective effect of isometric exercise. J Appl Physiol. 2003;95:1405-17.
  18. Jorgensen L, Crabtree NJ, Reeve J, et al. Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone. 2000;27(5): 701-7. https://doi.org/10.1016/S8756-3282(00)00374-4
  19. Kano Y, Shimegi S, Takahashi H, et al. Changes in capillary luminal diameter in rat soleus muscle after hind-limb suspension, Acta Physiol Scand. 2000;169:271-6. https://doi.org/10.1046/j.1365-201x.2000.00743.x
  20. Kondo H, Nishino K, Itokawa Y. Hydroxyl radical generation in skeletal muscle atrophied by immobilization. FEBS Lett. 1994;349:169-72. https://doi.org/10.1016/0014-5793(94)00641-5
  21. Krawiec BJ, Frost RA, Vary TC, et al. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am J Physiol Endocrinol Metab. 2005;289:969-80. https://doi.org/10.1152/ajpendo.00126.2005
  22. Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther. 2007;113(3):461-87. https://doi.org/10.1016/j.pharmthera.2006.11.004
  23. Meredith HW, Michael RD. The neuromuscular junction: anatomical features and adapotation to various forms of increased, or decreased neuromuscular activity. Int J Neurosci. 2005;115(6):803-28. https://doi.org/10.1080/00207450590882172
  24. Nagasaka M, Kohzuki M, Fujii T, et al. Effect of low-voltage electrical stimulation on angiogenic growth factors in ischaemic rat skeletal muscle. Clin Exp Pharmacol Physiol. 2006;.33(7):623-7. https://doi.org/10.1111/j.1440-1681.2006.04417.x
  25. Nemirovskaia TL, Shenkman BS, Krasnov IB. Effects of long-term hypergravitation on the skeletal muscular tissue in rats. Ross Fiziol Zh Im I M Sechenova. 2005;91(2):113-21.
  26. Paddon-Jones D, Sheffield-Moore M, Cree MG, et al. Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab. 2006;91(12):4836-41. https://doi.org/10.1210/jc.2006-0651
  27. Qin L, Appell HJ, Chan KM, et al. Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits. Arch Phys Med Rehabil. 1997;78(5):512-7. https://doi.org/10.1016/S0003-9993(97)90166-0
  28. Roberts D, Smith DJ. Biochemical aspects of peripheral muscle fatigue, Sports Med. 1989;17: 125-38.
  29. Sandara L, Amaral J, Russell R, et al. Angiogenesis Induced by Electrical Stimulation Is Mediated by Angiotensin II and VEGF. Microcirculation. 2001;8:57-67
  30. Shimada Y, Sakuraba T, Matsunaga T, et al. Effects of therapeutic magnetic stimulation on acute muscle atrophy in rats after hindlimb suspension, Biomed Res. 2006;27(1):23-7. https://doi.org/10.2220/biomedres.27.23
  31. Strasser EM, Stättner S, Karner J, et al. Neuromu-scular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients. Ann Surg. 2009;249(5):738-43. https://doi.org/10.1097/SLA.0b013e3181a38e71
  32. Thompson LV, Johnson SA, Shoeman JA. Single soleus muscle fiber function after hindlimb unweighting in adult and aged rats. J Appl Physiol. 1998;84:1937-42.
  33. Wagatsuma A, Tamaki H, Ogita F. Sequential expression of vascular endothelial growth factor, Flt-1, and KDR/Flk-1 in regenerating mouse skeletal muscle. Physiol Res. 2006;55(6):633-40.
  34. Xu JG, Tu YQ, Gu YD. Effect of electric stimulation on denervated skeletal muscle atrophy. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003;17(5): 96-9.
  35. Yumi K, Takeshi N, Katsuya H, et al. Preventive effect of isometric contraction exercise on disuse muscle atrophy using tail suspension mice. J Phys Ther Sci. 2008;(20):39-44. https://doi.org/10.1589/jpts.20.39