• Title/Summary/Keyword: Muscle atrophy

Search Result 345, Processing Time 0.029 seconds

Steroid induced muscle atrophy (스테로이드 유발성 근위축)

  • Choe, Myoung-Ae
    • Perspectives in Nursing Science
    • /
    • v.2 no.1
    • /
    • pp.19-36
    • /
    • 2005
  • Muscle atrophy is defined as a decrease in muscle mass, cross-sectional area, and myofibrillar protein content. Causes inducing muscle atrophy may be inactivity, denervation, undernutrition and steroid. Inactivity may decrease protein synthesis and increase protein breakdown of skeletal muscle. The muscle atrophy due to inactivity was induced by bed rest, hindlimb suspension, cast, total hip replacement arthroplasty, anterior cruciate ligament reconstruction. Denervated atrophy may be induced by the loss of innervation from lower motor neuron. The atrophy was apparent in the lower limb of hemiplegic patients following ischemic stroke and in the hindlimb of ischemic stroke rats. Protein breakdown of skeletal muscle in the undernourished state results in muscle atrophy. The atrophy due to undernutrition was evident in cancer and leukemia patients and in the undernourished rats. Steroids have been used to treat allergies, inflammatory diseases, autoimmune diseases and to inhibit immune function following transplantation. Steroids may induce muscle atrophy by protein breakdown of skeletal muscle. Muscle Physiology Laboratoryat College of Nursing, Seoul National University proved that dexamethasone may induce hindlimb muscle atrophy in rats and exercise and DHEA may attenuate hindlimb muscle atrophy induced by the steroid in rats. Nurses working with patients undergoing steroid treatment need to be cognizant of steroid induced muscle atrophy. They need to assess whether muscle atrophy is being occurred during and after the steroid treatment. Moreover, they need to apply exercise and DHEA to the patients undergoing steroid treatment in order to attenuate the steroid induced muscle atrophy.

  • PDF

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Gene Expression According to Electromyostimulation after Atrophy Conditions and Muscle Atrophy in Skeletal Muscle

  • Park, Chang-Eun
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Numerous biochemical molecules have been implicated in the development of muscular atrophy. However, control mechanisms associated with muscular disease are not clear. The present study was conducted to investigate gene expression profiles of rat muscle during the denervation to atrophy transition processes. We isolated total RNA from rats suffering from partial muscle atrophy (P) and electromyostimulated atrophy (PE) and synthesized cDNA using annealing control primers. Using 20 ACPs for PCR, we cloned 18 DEGs using TOPO TA cloning vector, sequenced, and analyzed their identities using BLAST search. Sequences of 14 clones significantly matched database entries, while one clone was ESTs, and 3 clones were unidentified. Different expression profiles of selected DEGs between P and PE were confirmed. The troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1 and Commd3 were highly expressed genes in the P and PE groups, while Krox-25 and TCOX2 were only expressed genes in the P group, the Sv2b and Marcks were only expressed genes in PE group. also, Cox8h was highly expressed genes in PE groups. The ASPH, ND1, and ARPL1 were highly expressed genes in the P and PE groups. List of genes obtained from the present study might provide an insight for the study of mechanism regulating muscle atrophy and electrostimulated muscle atrophy transitions. These data suggest that troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1, and Commd3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.

Rectus abdominis muscle atrophy after thoracotomy

  • Lee, Jang Hoon;Lee, Seok Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.133-135
    • /
    • 2020
  • Intercostal nerve injury is known to occur during thoracotomy; however, rectus abdominis muscle atrophy has rarely been reported. We describe a 52-year-old man who underwent primary closure of esophageal perforation and lung decortication via left thoracotomy. He was discharged 40 days postoperatively without any complications. He noticed an abdominal bulge 2 months later, and computed tomography revealed left rectus abdominis muscle atrophy. We report thoracotomy induced denervation causing rectus abdominis muscle atrophy.

Effect of Deer Antler Extract on Muscle Differentiation and 5-Aminoimidazole-4-Carboxamide Ribonucleoside (AICAR)-Induced Muscle Atrophy in C2C12 Cells

  • Jo, Kyungae;Jang, Woo Young;Yun, Beom Sik;Kim, Jin Soo;Lee, Hyun-Sun;Chang, Yeok Boo;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.623-635
    • /
    • 2021
  • The effect of deer antler extract on muscle differentiation and muscle atrophy were evaluated to minimize muscle loss following aging. Various deer antler extracts (HWE, hot water extract of deer antler; FE, HWE of fermented deer antler; ET, enzyme-assisted extract of deer antler; UE, extract prepared by ultrasonication of deer antler) were evaluated for their effect on muscle differentiation and inhibition of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-induced muscle atrophy in C2C12 cells. Morphological changes according to the effect of antler extracts on muscle differentiation were confirmed by Jenner-Giemsa staining. In addition, the expression levels of genes related to muscle differentiation and atrophy were confirmed through qRT-PCR. In the presence of antler extracts, the length and thickness of myotubes and myogenin differentiation 1 (MyoD1) and myogenic factor 5 (Myf5) gene expression were increased compared to those in the control group (CON). Gene expression of AMP-activated protein kinase (AMPK), MyoD1, and myogenin, along with the muscle atrophy factors muscle RING finger-1 (MuRF-1) and forkhead box O3a (FoxO3a) upon addition of deer antler extracts to muscle-atrophied C2C12 cells was determined by qRT-PCR after treatment with AICAR. The expression of MuRF-1 and FoxO3a decreased in the groups treated with antler extracts compared to that in the group treated with AICAR alone. In addition, gene expression of MyoD1 and myogenin in the muscle atrophy cell model was significantly increased compared that into the CON. Therefore, our findings indicate that antler extract can increase the expression of MyoD1, Myf5 and myogenin, inhibit muscle atrophy, and promote muscle differentiation.

Effects of Boehmeria platanifolia Extract on Muscle Amelioration in Dexamethasone-Induced Muscle Atrophy Mouse Model (개모시풀추출물의 Dexamethasone 유도 근위축 마우스 모델에서 근개선 효과 연구)

  • Misun Kim;Heung Joo Yuk;Dong-Seon Kim;Yoon-Young Sung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.31-37
    • /
    • 2023
  • Objective : This study was conducted to investigate the muscle-improving and therapeutic effects of Boehmeria platanifolia (BP) in a mouse model of dexamethasone-induced muscle atrophy. Methods : Muscle atrophy was induced in C57BL/6 mice by intraperitoneal administration of dexamethasone for 12 days. BP extract was administered orally at doses of 100 mg/kg and 200 mg/kg for 19 days, starting 7 days before the intraperitoneal administration of dexamethasone. Mice were weighed during the experimental period, and muscle strength and muscle weight were measured at the end of the experiment. The gastrocnemius (GASTROC) muscles of mice were isolated and the cross-sectional area (CSA) of the muscle fibers was measured after H&E staining. Results : Dexamethasone-induced muscle atrophy mice had a decrease in body weight compared to normal mice, and BP-administrated mice did not show significant change in body weight compared with a control group. Muscle strength in mice with induced muscle atrophy was reduced compared to normal and significantly increased with BP administration and positive control. In addition, the weight of the quadriceps (QUAD) muscle and fiber size of the GASTROC muscle, which was reduced in sarcopenia-induced mice, was increased by BP. Conclusion : BP extract increased muscle strength, muscle weight, and muscle fiber size in dexamethasone-induced muscle atrophy mice. This suggests that the efficacy of BP extracts in improving muscle strength and preventing and treating sarcopenia may be beneficial for the development of potential therapeutic or functional products.

Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts in an Animal Model of Dexamethasone-Induced Muscle Loss (Dexamethasone으로 유도한 근감소 동물모델에서 상황버섯-오미자박 고상발효 열수추출물의 근감소 개선에 대한 효과)

  • Su-Jin, Hwang;Young-Suk, Kim;Tae Woo, Oh
    • Herbal Formula Science
    • /
    • v.30 no.4
    • /
    • pp.269-280
    • /
    • 2022
  • Objectives : In this study, it was investigated the effects of solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis extract (PS) and its action mechanism on dexamethasone-induced muscle atrophy in mice. Methods : In mice, muscle atrophy model was induced by dexamethasone (5 mg/kg, I.p) once daily for 2 weeks and with PS extract administration (100 and 300 mg/kg, p.o.) as treatment groups. The changes in body weights, grip strength, Treadmill test, muscle weights, and the expression of atrophy-related genes were measured in muscle atrophy mice. The histological changes of gastrocnemius tissues were also observed by H&E staining with measurement of myofiber size. Results : The administration of PS extract increased significantly body weights, grip strength, treadmill test and muscle weights in muscle atrophy mice. PS extract administration increased significantly the area of myofibers and inhibited structural damages of muscle and increased significantly the expression of myogenin and decreased significantly the expression of MuRF1, Atrogin1 and phosphorylation of AMPK and PGC1α in muscle tissues of muscle atrophy mice. Conclusions : These results indicate that PS extract has a improvement effects on muscle atrophy with stimulation of myogenic differentiation and inhibition of mRNA degradation that could be related with the activation of AMPK and PGC1α signaling pathways in muscle. This suggests that PS extract can apply to treat muscle atrophy in clinics.

Induction of Muscle Atrophy by Dexamethasone and Hydrogen Peroxide in Differentiated C2C12 Myotubes (C2C12 근관세포에서 dexamethasone 및 hydrogen peroxide에 의한 근위축 유도)

  • Park, Cheol;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1479-1485
    • /
    • 2017
  • Muscle atrophy due to aging, starvation, and various chronic diseases leads to a decrease in muscle fiber area and density due to reduced muscle protein synthesis and increased protein breakdown. This study investigated the effect of dexamethasone and hydrogen peroxide on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes. C2C12 myoblasts were differentiated into myotubes in differentiation medium. During myoblast differentiation, muscle-specific transcription factors, such as myogenin, and MyoD expression increased. Differentiated C2C12 myotubes exposed to noncytotoxic levels of dexamethasone and hydrogen peroxide showed a decrease in myotube diameter, which was associated with up-regulation of muscle-specific ubiquitin ligases, such as muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and down-regulation of myogenin and MyoD. These results demonstrated that dexamethasone and hydrogen peroxide induced atrophy through regulation of muscle-specific ubiquitin ligases and muscle-specific transcription factors in C2C12 myotubes. In this study, we confirmed the process of differentiation of C2C12 myoblasts into myotubes in in vitro experiments in the presence of atrophy. This muscle atrophy model of C2C12 cells induced by dexamethasone or hydrogen peroxide seems suited to studies of the mechanism of muscle atrophy suppression and to exploit the experiment for excavating new muscle atrophy.

Undaria pinnatifida Extracts and Alginic Acid Attenuated Muscle Atrophy in TNF-α Induced Myoblast Cells through MAFbx Signaling Cascade (미역 추출물과 알긴산의 근육손실 억제 효능)

  • Choi, Sang Yoon;Kim, Mina;Lee, Hyun Hee L.;Hur, Jinyoung
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.137-143
    • /
    • 2021
  • Muscle atrophy refers to a decrease in muscle cells due to damage to muscle fibers. It is reported that muscle atrophy is caused by heart disease, diabetes, and other chronic diseases related to aging. The purpose of this study is to reveal the inhibitory effects of seaweed extracts, which are widely consumed in Korea, and alginic acid on muscle cell damage in muscle atrophy and regeneration models. We found that seaweed extracts (U) and alginic acid (A) attenuated TNF-α-induced muscle atrophy in differentiated C2C12 myoblast cells and inhibited muscle atrophy markers such as MuRF1 and MAFbx. In addition, U and A also regulated ubiquitination marker FoxO1 protein. To confirm the muscle regeneration effect in animal tissue, cardiotoxin (CTX) was used for the regeneration model. Six hours after CTX injection, gastrocnemius muscle volume was increased compared to control. Otherwise, the muscle volume of the U and A treatment groups was not changed. U and A also upregulated regeneration markers MyHC and PGC-1α in a CTX mouse model. These results indicate that seaweed extracts and alginic acid, a seaweed component, are applicable to senile sarcopenia by inhibiting muscle loss and promoting muscle regeneration.

Concurrent treatment with ursolic acid and low-intensity treadmill exercise improves muscle atrophy and related outcomes in rats

  • Kim, Jae Cheol;Kang, Yun Seok;Noh, Eun Bi;Seo, Baek Woon;Seo, Dae Yun;Park, Gi Duck;Kim, Sang Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.427-436
    • /
    • 2018
  • The objective of this study was to analyze the concurrent treatment effects of ursolic acid (UA) and low-intensity treadmill exercise and to confirm the effectiveness of UA as an exercise mimetic to safely improve muscle atrophy-related diseases using Sprague-Dawley (SD) rats with skeletal muscle atrophy. Significant muscle atrophy was induced in male SD rats through hind limb immobilization using casting for 10 days. The muscle atrophy-induced SD rats were group into four: SED, sedentary; UA, daily intraperitoneal UA injection, 5 mg/kg; EX, low-intensity (10-12 m/min, $0^{\circ}$ grade) treadmill exercise; and UEX, daily intraperitoneal UA injection, 5 mg/kg, and low-intensity (10-12 m/min, $0^{\circ}$ grade) treadmill exercise. After 8 weeks of treatment, endurance capacity was analyzed using a treadmill, and tissues were extracted for analysis of visceral fat mass, body weight, muscle mass, expression of muscle atrophy- and hypertrophy-related genes, and endurance capacity. Although the effects of body weight gain control, muscle mass increase, and endurance capacity improvement were inadequate in the UA group, significant results were confirmed in the UEX group. The UEX group had significantly reduced body weight and visceral fat, significantly improved mass of tibialis anterior and gastrocnemius muscles, and significantly decreased atrophy-related gene expression of MuRF1 and atrogin-1, but did not have significant change in hypertrophy-related gene expression of Akt and mTOR. The endurance capacity was significantly improved in the EX and UEX groups. These data suggest that concurrent treatment with low-intensity exercise and UA is effective for atrophy-related physical dysfunctions.