DOI QR코드

DOI QR Code

cDNA Cloning and Stage-Dependant Expression of Arylphorin Gene from Chinese Oak Silkworm, Antheraea pernyi

작잠(Antheraea pernyi) 아릴포린(Arylphorin) 유전자의 cDNA 클로닝 및 아릴포린 유전자의 발육시기 의존성 발현양상

  • Lee, Sang-Mong (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Nam-Sook (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Yong-Gyun (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Keun-Ki (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Hyun-Chul (Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
  • 이상몽 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 황재삼 (국립농업과학원 농업생물부) ;
  • 박남숙 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 김용균 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 김근기 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 손홍주 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 박현철 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 진병래 (동아대학교 생명자원과학대학)
  • Received : 2010.07.06
  • Accepted : 2010.08.10
  • Published : 2010.08.30

Abstract

The cDNA cloning and developmental profiles of the mRNA for A. pernyi arylphorin was determined. The complete A. pernyi arylphorin cDNA sequence comprised 2,234 bp (without the poly $A^+$ tail), including an open reading frame of 2,112 bp beginning with a methionine ATG at bp34. The A. pernyi arylphorin contained 704 amino acids which are highly enriched in aromatic amino acids, phenylalanine and tyrosine. The calculated molecular mass of the A. pernyi arylphorin from the ORF was 83,439 Da. The deduced amino acid sequence of A. pernyi arylphorin showed 78, 71, 62 and 64% identity with those of H. cecropia, M. sexta $\alpha$ subunit, M. sexta $\beta$ subunit and B. mori storage protein. In Northern blot analysis, the A. pernyi arylphorin mRNA only in the fat body of the 5th instar larvae was responsible for gene expression of the protein, and the synthetic activity of the mRNA was detected strongly in the early larvae, but not in the middle or late-stage larvae. In addition, a very weak signal in mRNA activity was detected in pupal stages, but this was considered to be inactive mRNA after reviewing the results of the labeling experiment of this protein.

상수리 잎을 먹고 자라는 야생견사곤충의 일종인 작잠의 저장단백질인 아릴포린 유전자의 cDNA를 클로닝하고 발육경과에 따른 유전자발현의 양상을 조사 검토하였다. 작잠의 아릴포린 유전자의 cDNA는 2,112 bp의 ORF(open reading frame)를 포함하여 2,234 bp임을 밝혔다. 작잠 아릴포린 유전자의 cDNA염기서열로부터 아미노산 서열을 검토한 결과 방향족 아미노산인 페닐알라닌(phenylalanine)과 티로신(tyrosine)의 성분이 높은 아미노산 서열구조를 보였으며 ORF로부터 계산한 단백질의 분자량은 83,439 Da 이었다.작잠 아릴포린 저장단백질의 아미노산서열을 다른 곤충의 서열과 그 상동성을 비교 분석한 결과 세크로피아잠(H. cecropia)과는 78%, 담배나방의 알파단량체(M. sexta-$\alpha$ subunit)와는 71%, 담배나방의 베타단량체(M. sexta $\beta$-subunit)와는 62% 그리고 가잠(B. mori)과는 64%의 아미노산서열 상동성을 각각 보였다. 또, Northern blot analysis에서 유충 5령기의 중장, 중부 실샘, 후부 실샘에서는 아릴포린 유전자가 발현되지 않고 오로지 지방체 조직에서만 아릴포린 유전자가 발현되었음을 확인하였다. 아릴포린 유전자는 특히 종령인 5령 유충의 초기에 발현강도가 높았으며 중, 후기로 갈수록 그 강도가 감소하였다. 하지만 번데기시기에는 흔적 정도의 해당 mRNA가 검출되었으며, 이와 같이 검출된 mRNA는 불활성화된 것으로 추정된다. 이상의 결과에서 작잠 아릴포린 유전자의 cDNA가 클로닝되었으며, 이 유전자는 유충기특이적 발현 및 지방체 조직특이적 발현양상을 보인 점이 본 연구에서 확인되었다.

Keywords

References

  1. Ancsin, J. B. and G. B. Wyatt. 1996. Purification and characterization of two storage proteins from Locusta migratoria showing distinct developmental and hormonal regulation. Insect Biochem. Mol. Biol. 26, 501-510. https://doi.org/10.1016/0965-1748(96)00005-7
  2. Andersen, S. O. 1985. Sclerotization and tanning of the cuticle. pp. 59-74, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3, Pergamon Press Ltd., Oxford, England.
  3. Barnett, T. C., C. Pachl, J. P. Gergen, and P. C. Wensink. 1980. The isolation and characterization of Drosophila yolk protein genes. Cell 21, 729-738. https://doi.org/10.1016/0092-8674(80)90436-5
  4. Beenakkers, A. M. Th., D. J. Van der Horst, and W. J. A. Van Marrewijk. 1985. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid. Res. 24, 19-67. https://doi.org/10.1016/0163-7827(85)90007-4
  5. Beenakkers, A. M. Th., H. Chino, and J. H. Law. 1988. Lipophorin nomenclature. Insect Biochem. 18, 1-2. https://doi.org/10.1016/0020-1790(88)90029-7
  6. Castro, V. M., H. G. Boman, and S. Hammarstrom. 1987. Isolation and characterization of a group of isolectins with galactose/N-acetylgalactosa mine specificity from hemolymph of the giant silkmoth, Hyalophora cecropia. Insect Biochem. 17, 513-523. https://doi.org/10.1016/0020-1790(87)90049-7
  7. Chang, E. S. and W. G. Goodman. 1985. Juvenile hormone cellular and hemolymph binding proteins, pp. 491-510, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 7, Pergamon Press Ltd., Oxford, England.
  8. Chen, T. T., P. W. Strahlendorf, and G. R. Wyatt. 1978. Vitellin and vitellogenin from locusts (Locusta migratoria). J. Biol. Chem. 253, 5325-5331.
  9. Chino, H., R. G. H. Downer, G. R. Wyatt, and L. I. Gibert. 1981. Lipophorins, a major class of lipoproteins of insect haemolymph. Insect Biochem. 11, 491-498. https://doi.org/10.1016/0020-1790(81)90085-8
  10. Chino, H., Y. Abe, and K. Takahashi. 1983. Purification and characterization of a biliverdin-binding cyanoprotein from the locust haemolymph. Biochem. Biophys. Acta 748, 109-115. https://doi.org/10.1016/0167-4838(83)90033-X
  11. Croizier, G. and L. Croizier. 1978. Purification et comparaison immunologique de 2 lysozymes d'insects. C. R. Acad. Sci. Paris. 286, 469-472
  12. DeKort, C. A. D. and A. B. Koopmanschap. 1994. Nucleotide and deduced amino acid sequence of a cDNA clone encoding diapause protein 1, an arylphorin-type storage hexamer of the Colorado potato beetle. J. Insect Physiol. 40, 527-535. https://doi.org/10.1016/0022-1910(94)90126-0
  13. Eguchi, M. and M. Kanbe. 1982. Changes in haemolymph protease inhibitors during metamorphosis of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 17, 179-187.
  14. Engelmann, F. 1979. Insect vitellogenin: identification, biosynthesis and role in vitellogenesis. Adv. Insect Physiol. 14, 49-108. https://doi.org/10.1016/S0065-2806(08)60051-X
  15. Fujii, T., H. Sakurai, S. Izumi, and S. Tomino. 1989. Structure of the gene for the arylphorin-type storage protein SP-2 of Bombyx mori. J. Biol. Chem. 264, 11020-11025.
  16. Holman, G. M., M. S. Wright and R. J. Nachman. 1988. Insect neuropeptides; coming of age. ISI Atlas of Science, Plants and Animals. 1, 129-136.
  17. Hwang, J. S., J. S. Lee, T. W. Goo, S. M. Lee, O. Y. Kwon, and H. R. Kim. 1999. Comparative analysis of nucleotide sequence and codon usage of arylphorin gene cloned from silk producing insects and their molecular phylogenetics. J. Life Sci. 9, 84-89.
  18. Kanost, M. R., J. K. Kawooya, J. H. Law, R. O. Ryan, M. C. Van Heusden, and R. Ziegler. 1990. Insect haemolymph proteins. Adv. Insect Physiol. 22, 299-396. https://doi.org/10.1016/S0065-2806(08)60008-9
  19. Kim, S. H., S. K. Whang, R. D. Dwek, P. M. Rudd, Y. H. Ahn, E. H. Kim, C. Cheong, S, I, Kim, N, S, Park, and S. M. Lee. 2003. Structural determination of the N-glycans of a lepidopteran arylphorin reveals the presence of a monoglucosylated oligosaccharide in the storage protein. Glycobiology 13, 147-157 https://doi.org/10.1093/glycob/cwg023
  20. Kumaran, A. K., N. A. Memmel, C. Wang, and P. M. Trewitt. 1993. Developmental regulation of arylphorin gene activity in fat body cells and gonadal sheath cells of Galleria mellanella. Insect Biochem. Mol. Biol. 23, 145-151. https://doi.org/10.1016/0965-1748(93)90093-8
  21. Levenbook, L. 1985. Insect storage proteins, pp. 307-346, In Gillbert, L. I. and G. A. Kerkut (eds.), Comprehensive Insect Physiology, Biochemistry and Phamacology, Vol. 10, Pergamon Press Ltd., Oxford, England.
  22. Memmel, N. A., P. M. Trewitt, D. L. Silhacek, and A. K. Kumaran. 1992. Nucleotide sequence and structure of the arylphorin gene from Galleria mellonella. Insect Biochem. Mol. Biol. 22, 333-342. https://doi.org/10.1016/0965-1748(92)90071-L
  23. Naumann, U. and K. Scheller. 1991. Complete cDNA and gene sequence of the developmentally regulated biosynthesis of arylphorin of Calliphora vicina and its relationship to insect hemolymph proteins and arthropod hemocyanins. Biochem. Biophys. Res. Commun. 177, 963-972. https://doi.org/10.1016/0006-291X(91)90632-H
  24. Park, N. S., M. A. Kim, H. C. Park, K. K. Kim, B. R. Jin, and S. M. Lee. 2008. Comparison of arylphorin of Antheraea with those of several lepidopteran wild silkmoths by Western Blot Analysis. J. Life Sci. 18, 409-413. https://doi.org/10.5352/JLS.2008.18.3.409
  25. Park, S. B., J. W. Kim, S. H. Kim, N. S. Park, B. R. Jin, J. S. Hwang, S. I. Seong, B. H. Lee, E. J. Park, and S. M. Lee. 2003. Purification and characterization of arylphorin of the Chinese oak silkmoth, Antheraea pernyi. Int. J. Indust. Entomol. 6, 33-44
  26. Roberts, D. B. and H. W. Brock. 1981. The major serum proteins of dipteran larvae. Experientia 37, 103-110. https://doi.org/10.1007/BF01963174
  27. Park, S. B. 2002. Physiological, biochemical and molecular biological characterizations of the pupal major haemolymph protein in the Chinese wild oak silkmoth Antheraea pernyi. Ph.D. Thesis, Chungbuk National University, Korea
  28. Shimada, T., Y. Kurimoto, and M. Kobayashi. 1995. Phylogenetic relationship of silkmoths inferred from sequence data of the arylphorin gene. Mol. Phylogenet. Evol. 4, 223-234. https://doi.org/10.1006/mpev.1995.1021
  29. Telfer, W. H. and J. G. Kunkel. 1991. The function and evolution of insect storage hexamers. Annu. Rev. Ent. 36, 205-228. https://doi.org/10.1146/annurev.en.36.010191.001225
  30. Telfer, W. H., P. S. Keim, and J. H. Law. 1983. Arylphorin, a new protein from Hyalophora cecropia: comparisons with Calliphorin and Manducin. Insect Biochem. 13, 601-613. https://doi.org/10.1016/0020-1790(83)90034-3
  31. Tojo, S., T. Betchaku, V. J. Ziccardi, and G. R. Wyatt. 1978. Fat body protein granules and storage proteins in the silkmoth, Hyalophora cecropia. J. Cell Biol. 78, 823-838. https://doi.org/10.1083/jcb.78.3.823
  32. Tojo, S., M. Nagata, and M. Kobayashi. 1980. Storage proteins in the silkworm, Bombyx mori. Insect Biochem. 10, 289-303. https://doi.org/10.1016/0020-1790(80)90024-4
  33. Willot, E., X. Y. Wang, and M. A. Wells. 1989. cDNA and gene sequence of Manduca sexta arylphorin, and aromatic amino acid-rich larval serum protein; homology to arthropod hemocyanins. J. Biol. Chem. 264, 19052-19059.
  34. Wyatt, G. R. and M. L. Pan. 1978. Insect plasma proteins. Annu. Rev. Biochem. 47, 779-817. https://doi.org/10.1146/annurev.bi.47.070178.004023