DOI QR코드

DOI QR Code

Analysis of Quantitative Trait Loci (QTLs) for Seed Size and Fatty Acid Composition Using Recombinant Inbred Lines in Soybean

콩 재조합자식계통을 이용한 콩 종자의 크기와 지방산 조성의 양적 형질 유전자좌 분석

  • Kim, Hyeun-Kyeung (Bioresources Development Institute, Pusan National University) ;
  • Kim, Yong-Chul (Department of Plant Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Kim, Sun-Tae (Department of Plant Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Son, Beung-Gu (Department of Horticulture Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Choi, Yong-Whan (Department of Horticulture Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Kang, Jum-Soon (Department of Horticulture Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Park, Young-Hoon (Department of Horticulture Bioscience, College of Natural Resource & Life Science, Pusan National University) ;
  • Cho, Young-Son (Department of Crop Science & Biotechnology, Jinju National University) ;
  • Choi, In-Soo (Department of Plant Bioscience, College of Natural Resource & Life Science, Pusan National University)
  • 김현경 (부산대학교 생명자원개발연구소) ;
  • 김용철 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 김선태 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 손병구 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 최영환 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 강점순 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 박영훈 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 조영손 (진주산업대학교 작물생명과학과) ;
  • 최인수 (부산대학교 생명자원과학대학 식물생명과학과)
  • Received : 2010.07.01
  • Accepted : 2010.08.26
  • Published : 2010.08.30

Abstract

Soybean [Glycine max(L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvements in economic traits, such as quality and oil constituents, arethe most important objectives in soybean breeding. The objective of this study was to identify quantitative trait loci (QTLs) that control seed size and fatty acid contents in soybean. 115 $F_{2:10}$ recombinant inbred lines (RIL) developed from a cross of 'Keunolkong' and 'Iksan10' were used. Narrow-sense heritability estimates based on a plot mean on 100 seed weight, saturated fatty acid (palmitic acid + stearic acid), and oleic, linoleic, and linolenic acid content were 0.72, 0.60, 0.83, 0.77 and 0.81, respectively. The 100 seeds weight was related to seven QTLs located on chromosomes 1, 3, 8, 9, 16 and 17. Two independent QTLs for saturated fatty acid content were identified on chromosomes 17 and 19. Five independent QTLs for oleic acid content wereidentified on chromosomes7, 11, 14, 16 and 19. Five QTLs for linoleic acid content were located on chromosomes 2, 11, 14, 16 and 19. Three QTLs for linolenic acid content were located on chromosomes 8, 10 and 19. Oleic, linoleic, and linolenic acid had one major common QTL on chromosome 19. Thus, linoleic and linolenic acid content were identified as common QTLs.

콩은 세계 유지작물시장에서 48%을 차지하는 중요한 작물이다. 콩 종실의 크기와 기름함량의 양적 및 질적 개선이 콩 육종에 있어서 가장 중요한 목적중의 하나이다. 이 연구의 목적은 종실의 크기와 지방산조성을 조절하는 양적 형질 유전자좌를 밝히는 것이다. 큰올콩과 익산10호의 교배로부터 F2:10 세대의 재조합자식계통 115계통을 이용하였다. 협의 유전력 검정에서는 백립중이 0.72, 포화지방산(팔미트산 + 스테아릭산)이 0.60, 올레익산이 0.83과 리놀레익산이 0.77 및 리놀렌산이 0.81을 나타내었다. 백립중과 연관된 양적형질유전자좌는 염색체 1번, 3번, 8번, 9번과 16번 및 17번에 7개로 나타났다. 포화지방산은 염색체 17번과 19번에 2개의 독립된 양적 형질 유전자좌가 연관되어 있었다. 올레익산 함량에 대해서는 다섯 개의 독립적인 양적 형질 유전자좌가 염색체 7번, 11번, 14번과 16번 및 19번에서 확인하였다. 리놀레익산 함량에 대한 5개의 양적 형질 유전자좌는 염색체 2번, 11번, 14번과 16번 및 19번에 있었다. 리놀렌산 함량은 3개의 양적형질유전자좌가 염색체 8번과 10번 및 19번에 관련되어 있었다. 그리고 올레익산과, 리놀레익산 및 리놀렌산에 공통적으로 확인되는 주요 양적 형질 유전자좌는 염색체 19번 이었다.

Keywords

References

  1. Beuselinck, P. R., D. A. Sleper, and K. D. Bilyeu. 2006. An assessment of phenotype selection for linolenic acid using genetic markers. Crop Sci. 46, 747-750. https://doi.org/10.2135/cropsci2005-04-0041
  2. Brummer, E. C., G. L. Graef, J. Orf, J. R. Wilcox, and R. C. Shoemaker. 1997. Mapping QTL for seed protein and oil content eight soybean populations. Crop Sci. 37, 370-378. https://doi.org/10.2135/cropsci1997.0011183X003700020011x
  3. Burton, J. W. 1987. Quantitative genetics: Results relevant to soybean breeding. In J. R. Wilcox (ed.) Soybeans: Improvement, production and uses, 2nd eds. Agron. Monogr. 16 ASA, CSSA, ANd SSSA, Madison, WI.
  4. Chung, J., H. L. Babka, G. L. Graef, P. E. Staswick, D. J. Lee, P. B. Cregan, R. C. Shoemaker, and J. E. Specht. 2003. The seed protein, oil and yield QTL on soybean linkage group I. Crop Sci. 43, 1053-1067. https://doi.org/10.2135/cropsci2003.1053
  5. Glaudements, H. D, M. M. J. Timmermans, and H. Rijkse. 1998. The world of edible oils. pp. 1-5 Robobank International Marketing, Utrecht, the Netherlands.
  6. Fehr, W. R., G. A. Welke, E. G Hammond, D. N. Duvick, and S. R. Cianzio. 1991. Inheritance of elevated palmitic acid content in soybean seed oil. Crop Sci. 31, 1522-1524. https://doi.org/10.2135/cropsci1991.0011183X003100060027x
  7. Frey, K.J. and T. Horner. 1957 Heritability in standard units. Agron. J. 49, 59-62. https://doi.org/10.2134/agronj1957.00021962004900020001x
  8. Haldane, J. B. S. 1919. The combination of linkage values and the calculation of distances between the loci of linked factors. J. Genet. 8, 299-309.
  9. Hammond, E. G. 1991. Organization of rapid analysis of lipids in many individual plants. Modern Methods of Plant Analysis 12, 321-329 https://doi.org/10.1007/978-3-642-84023-4_18
  10. Hammond, E. G. and W. R. Fehr. 1975. Oil quality improvement in soybeans - Glycine max (L.) Merr. Fette Seifen Anstrichmittle Verbunden Mit Der Zeitschrift sie Ernahrungsindustrie 77, 97-101. https://doi.org/10.1002/lipi.19750770304
  11. Hoeck, J. A., W. R. Fehr, R. C. Shoemaker, G. A. Welke, S. L. Johnson, and S. R. Cianzio. 2003.Molecular marker analysis of seed size in soybean. Crop Sci. 43, 68-74. https://doi.org/10.2135/cropsci2003.0068
  12. Hu, F. B., M. J. Stampfer, J. E. Manson, E. Rimm, G. A. Colditz, B. A. Rosner, C. H. Hennekens, and W. C. Willett. 1997. Dietary fat intake and the risk of coronary heart disease in women. N. Eng. J. Med. 337, 1491-1499 https://doi.org/10.1056/NEJM199711203372102
  13. Hu, F. B., M. J. Stampfer, J. E. Manson, E. Rimm, G. A. Colditz, B. A. Rosner, C. H. Hennekens, and W. C. Willett. 1997. Dietary fat intake and the risk of coronary heart disease in women. N. Eng. J. Med. 337, 1491-1499 https://doi.org/10.1056/NEJM199711203372102
  14. Kim, H. K., S. T. Kang, M. G. Choung, C. S. Jung, K. W. Oh, I. Y. Baek, and B. G. Son. 2006. Simple sequence repeat markers linked to quantitative trait loci controlling seed weight, protein and oil content in soybean. J. Life Sci. 16, 949-954. https://doi.org/10.5352/JLS.2006.16.6.949
  15. Keim, P., T. C. Olson, and R. C. Shoemaker. 1988. A rapid protocol for isolating soybean DNA. Soybean Genet. Newsl. 15, 150-154.
  16. Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, E. R. Shipe, D. A. Ashley, W. A. Parrott, R. S. Hussey, and H. R. Boerma. 1996. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor. Appl. Genet. 93, 649-657. https://doi.org/10.1007/BF00224058
  17. Liu, K. 1997. Soybeans: Chemistry, technology and utilization. Chapman and Hall, New York.
  18. Li, Z., R. F. Wilson, W. E. Rayford, and H. R. Boerma. 2002. Molecular mapping genes conditioning reduced palmitic acid content. Crop Sci. 42, 373-378. https://doi.org/10.2135/cropsci2002.0373
  19. Mainly, K. F. and J. M. Olson. 1999. Overview of QTL mapping software and introduction to Map Manager QT. Mamm. Genome 10, 327-334. https://doi.org/10.1007/s003359900997
  20. Mansur, L. M., J. H. Orf, K. Chase, T. Jarvik, P. B. Cregan, and K. G. Lark. 1996. Genetic mapping of agronomic traits using recombinant inbred lines of soybean [Glycine max (L.) Merr.]. Crop Sci. 36, 1327-1336. https://doi.org/10.2135/cropsci1996.0011183X003600050042x
  21. Miller, J. F., D. C. Zimmerman, and B. A. Vick. 1987. Genetic control of high oleic acid content in sunflower oil. Crop Sci.27, 923-926. https://doi.org/10.2135/cropsci1987.0011183X002700050019x
  22. Orf, J. H., K. Chase, F. R. Alder, L. M. Mansur, and L. G. Lark. 1999. Genetics of soybean agronomic traits: II. Interaction between yield quantitative trait loci in soybean. Crop Sci. 39, 1652-1657. https://doi.org/10.2135/cropsci1999.3961652x
  23. Panthee, D. R., V. R. Pantalone, D. R. West, A. M. Saxton, and C. E. Sams. 2005. Quanttitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 45, 2015-2022. https://doi.org/10.2135/cropsci2004.0720
  24. Rakow, G. and D. I. McGegor. 1973. Opportunities and problems in modification of levels of rapeseed C18 unsaturated fatty acid. J. Am. Oil Chem. Soc. 50, 400-403. https://doi.org/10.1007/BF02641817
  25. Robertson J. A. and J. K. Tomas. 1976. Chemical and microbial changes in dehulled confectionary sunflower kernels during storage under controlled conditions. J. Milk Food Technol. 39, 18-23.
  26. Son, Y. K., J. J. Hwang, S. L. Kim, Y. H. Ryu, D. C. Shin, and J. Y. Yoo. 1997. Effect of soybean cultivars Korean traditional deonjang (soybean paste) processing. Korea Soybean Digest 14, 27-36.
  27. Topfer, R., N. Martini, and J. Schell. 1995. Modification of plant lipid synthesis. Science 268, 681-686. https://doi.org/10.1126/science.268.5211.681
  28. Vles R. O. and J. J. Gottrnbos. 1989. Nutritional characteristics and food use of vegetable oils, pp. 63-86, In Robbelen, G. et al. (eds.), Oil crops of the World, Their Breeding and Utilization, McGraw-Hill, New York.
  29. Wang, T., T. Harp, E. G. Hammond, J. S. Burris, and W. R. Fehr. 2001. Seed physiological performance of soybeans with altered saturated fatty acid contents. Seed Sci. Res. 11, 93-97. https://doi.org/10.1079/SSR200063
  30. Watanabe, S, T. Tajuddin, N. Yamanaka, M. hayashi, and K. Harada. 2004. Analysis of QTLs for reproduction development and seed quality traits in soybean using recombinant in bred lines. Breed. Sci. 54, 399-407. https://doi.org/10.1270/jsbbs.54.399
  31. Wilcox, J. R., J. F. Cavins, and N. C. Nielsen. 1984. Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil Chem. Soc. 61, 97-100. https://doi.org/10.1007/BF02672055
  32. Whittaker, J. C., R. Thompson, and D. M. Vissche. 1996. On the mapping of QTL by regression of phenotype on marker type. Heredity 77, 23-32. https://doi.org/10.1038/hdy.1996.104
  33. Wilson, R. F., J. W. Burton, and C. A Brim. 1981. Progress in the selection for altered fatty acid composition in soybean. Crop Sci. 27, 788-791.

Cited by

  1. Selection of soybean elite cultivars based on phenotypic and genomic characters related to lodging tolerance vol.136, pp.4, 2017, https://doi.org/10.1111/pbr.12495
  2. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments vol.206, pp.3, 2015, https://doi.org/10.1007/s10681-015-1491-3
  3. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL vol.7, 2016, https://doi.org/10.3389/fgene.2016.00038
  4. Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut (Arachis hypogaea L.) vol.8, 2017, https://doi.org/10.3389/fpls.2017.00794
  5. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-3854-8
  6. Identification of quantitative trait loci controlling soybean seed weight in recombinant inbred lines derived from PI 483463 (Glycine soja) × ‘Hutcheson’ (G. max) vol.135, pp.5, 2016, https://doi.org/10.1111/pbr.12407
  7. SNP-SNP Interaction Analysis on Soybean Oil Content under Multi-Environments vol.11, pp.9, 2016, https://doi.org/10.1371/journal.pone.0163692
  8. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja) vol.68, pp.2, 2017, https://doi.org/10.1071/CP16246
  9. Using presence/absence variation markers to identify the QTL/allele system that confers the small seed trait in wild soybean (Glycine soja Sieb. & Zucc.) vol.208, pp.1, 2016, https://doi.org/10.1007/s10681-015-1591-0
  10. Identification of quantitative trait loci underlying fatty acid content of soybean (Glycine max), including main, epistatic and QTL×environment effects across multiple environments vol.68, pp.9, 2017, https://doi.org/10.1071/CP17241
  11. (L.) Merr.] vol.98, pp.4, 2018, https://doi.org/10.1139/cjps-2017-0204
  12. De novo assembly of a Chinese soybean genome vol.61, pp.8, 2018, https://doi.org/10.1007/s11427-018-9360-0
  13. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining vol.137, pp.2, 2018, https://doi.org/10.1111/pbr.12562
  14. Genome-wide association and transcriptional studies reveal novel genes for unsaturated fatty acid synthesis in a panel of soybean accessions vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-5449-z