DOI QR코드

DOI QR Code

A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_*(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

  • Cho, You-Young (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY) ;
  • Cho, Gyeong-Mi (DEPARTMENT OF MULTIMEDIA ENGINEERING DONGSEO UNIVERSITY)
  • 투고 : 2009.03.18
  • 심사 : 2010.01.04
  • 발행 : 2010.01.31

초록

In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Y. Q. Bai, M. El Ghami and C. Roos, A new efficient large-update primal-dual interior-point method based on a finite barrier, Siam J. on Optimization, 13 (2003), 766-782.
  2. Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algo-rithms in linear optimization, Siam J. on Optimization 15 (2004), 101-128. https://doi.org/10.1137/S1052623403423114
  3. G. M. Cho, A new large-update interior point algorithm for P_{\ast}(k) linear complementar-ity problems, Journal of Computational and Applied Mathematics 216 (2008), 256-278.
  4. G. M. Cho and M. K. Kim, A new large-update interior point algorithm for P_{\ast}(k) LCPs based on kernel functions, Applied Mathematics and Computation 182 (2006),1169-1183. https://doi.org/10.1016/j.amc.2006.04.060
  5. R. W. Cottle, J. S. Pang and R. E. Stone, The linear complementarity problem, Academic Press, San Diego, CA, 1992.
  6. M. El Ghami, I. Ivanov, J.B.M. Melissen, C. Roos and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics 224 (2009), 500-513. https://doi.org/10.1016/j.cam.2008.05.027
  7. T. Illes and M. Nagy, A Mizuno-Todd-Ye type preditor-corrector algorithm for sufficient linear complementarity problems, European Journal of Operational Research 181 (2007), 1097-1111. https://doi.org/10.1016/j.ejor.2005.08.031
  8. M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, Vol.538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
  9. S. G. Nash and A. Sofer, Linear and nonlinear programming, McGraw-Hill, New York,1996.
  10. Y. E. Nesterov and A. S. Nemirovskii, Interior point polynomial algorithms in convex programming, SIAM Studies in Applied Mathematics 13, Philadelphia PA, 1994.
  11. J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93 (2002), 129-171. https://doi.org/10.1007/s101070200296
  12. J. Peng, C. Roos and T. Terlaky, Primal-dual interior-point methods for second-order conic optimization based on self-regular proximities, SIAM J. Optim., 13 (2002), 179-203. https://doi.org/10.1137/S1052623401383236
  13. J. Peng, C. Roos and T. Terlaky, Self-Regularity, A new paradigm for primal-dual interior-point algorithms,Princeton University Press, 2002.
  14. C. Roos, T. Terlaky and J. Ph. Vial, Theory and algorithms for linear optimization, An interior approach, John Wiley & Sons, Chichester, U.K., 1997.
  15. S. J. Wright, Primal-dual interior-point methods, SIAM, 1997.