Acknowledgement
Supported by : National Research Foundation of Korea
References
- Y. Q. Bai, M. El Ghami and C. Roos, A new efficient large-update primal-dual interior-point method based on a finite barrier, Siam J. on Optimization, 13 (2003), 766-782.
- Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algo-rithms in linear optimization, Siam J. on Optimization 15 (2004), 101-128. https://doi.org/10.1137/S1052623403423114
-
G. M. Cho, A new large-update interior point algorithm for
P_{\ast}(k) linear complementar-ity problems, Journal of Computational and Applied Mathematics 216 (2008), 256-278. -
G. M. Cho and M. K. Kim, A new large-update interior point algorithm for
P_{\ast}(k) LCPs based on kernel functions, Applied Mathematics and Computation 182 (2006),1169-1183. https://doi.org/10.1016/j.amc.2006.04.060 - R. W. Cottle, J. S. Pang and R. E. Stone, The linear complementarity problem, Academic Press, San Diego, CA, 1992.
- M. El Ghami, I. Ivanov, J.B.M. Melissen, C. Roos and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics 224 (2009), 500-513. https://doi.org/10.1016/j.cam.2008.05.027
- T. Illes and M. Nagy, A Mizuno-Todd-Ye type preditor-corrector algorithm for sufficient linear complementarity problems, European Journal of Operational Research 181 (2007), 1097-1111. https://doi.org/10.1016/j.ejor.2005.08.031
- M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, Vol.538, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, 1991.
- S. G. Nash and A. Sofer, Linear and nonlinear programming, McGraw-Hill, New York,1996.
- Y. E. Nesterov and A. S. Nemirovskii, Interior point polynomial algorithms in convex programming, SIAM Studies in Applied Mathematics 13, Philadelphia PA, 1994.
- J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming 93 (2002), 129-171. https://doi.org/10.1007/s101070200296
- J. Peng, C. Roos and T. Terlaky, Primal-dual interior-point methods for second-order conic optimization based on self-regular proximities, SIAM J. Optim., 13 (2002), 179-203. https://doi.org/10.1137/S1052623401383236
- J. Peng, C. Roos and T. Terlaky, Self-Regularity, A new paradigm for primal-dual interior-point algorithms,Princeton University Press, 2002.
- C. Roos, T. Terlaky and J. Ph. Vial, Theory and algorithms for linear optimization, An interior approach, John Wiley & Sons, Chichester, U.K., 1997.
- S. J. Wright, Primal-dual interior-point methods, SIAM, 1997.