DOI QR코드

DOI QR Code

A Brief Review of a Term Saddlepoint Approximation Method for Estimating Diffusion Processes

단일항 안장점근사법에 의한 확산모형의 추정

  • Received : 20100300
  • Accepted : 20100400
  • Published : 2010.05.31

Abstract

Recently various methods were suggested and reviewed for estimating diffusion processes. Out of suggested estimation method, we mainly concerns on the estimation method using saddlepoint approximation method, and we suggest a term saddlepoint approximation(ASP) method which is the simplest saddlepoint approximation method. We will show that ASP method provides fast estimator as much as Euler approximation method(EAM) in computing, and the estimator also has good statistical properties comparable to the maximum likelihood estimator(MLE). By simulation study we compare the properties of ASP estimator with MLE and EAM, for Ornstein-Uhlenbeck diffusion processes.

최근 확산모형의 추정을 위한 매우 다양한 방법론들이 제시되고 연구 되어 왔다. 본 연구에서는 제안된 확산모형의 추정 방법 중에서, 안장점근사법을 이용한 확산모형의 모수 추정방법에 대하여 살펴보게 되고, 가장 단순한 형태의 안장점근사법인 단일항 안장점근사법의 사용을 제안하게 된다. 단일항 안장점근사법은 오일러근사법과 마찬가지로 계산속도가 빠르고, 다양한 모형에 적용이 가능하면서도 최대우도추정량과 마찬가지로 성능이 우수한 특성을 갖고 있음을 살펴보게 된다. OU 확산모형을 대상으로 한 시뮬레이션 연구를 통하여 단일항 안장점근사를 이용한 추정량과 다른 추정량들과의 성질을 비교한다.

Keywords

References

  1. Ahn, D. and Gao, B. (1999). A parametric nonlinear model of term structure dynamics, The Review of Financial Studies, 12, 721-762. https://doi.org/10.1093/rfs/12.4.721
  2. Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions, Journal of Finance, 54, 1361-1395. https://doi.org/10.1111/0022-1082.00149
  3. Ait-Sahalia, Y. (2002). Maximum-likelihood estimation of discretely-sampled diffusions: A closed-form approximation approach, Econometrica, 70, 223-262. https://doi.org/10.1111/1468-0262.00274
  4. Ait-Sahalia, Y. and Yu, J. (2006). Saddlepoint approximations for continuous -Time Markov processes, Journal of Econometrics, 134, 507-551. https://doi.org/10.1016/j.jeconom.2005.07.004
  5. Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics, Chapman & Hall, New York.
  6. Chan, K. C., Karolyi, G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate, Journal of Finance, 47, 1209-1227. https://doi.org/10.2307/2328983
  7. Cox, J. (1975). Notes on option pricing I: Constant elasticity of variance diffusions. Working paper, Stanford University (reprinted in Journal of Portfolio Management, 1996, 22, 15-17).
  8. Cox, J., Ingersoll, J. and Ross, S. (1985). A theory of the term structure of interest rates, Econometrica, 53, 385-407. https://doi.org/10.2307/1911242
  9. Daniels, H. (1954). Saddlepoint approximations in statistics, Annals of Mathematical Statistics, 25, 631-650. https://doi.org/10.1214/aoms/1177728652
  10. Goutis, C. and Casella, G. (1999). Explaining the Saddlepoint Approximation, The American Statistician, 53, 216-224. https://doi.org/10.2307/2686100
  11. Hurn, A., Jeisman, J. and Lindsay, K. (2007). Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations, Journal of Financial Econometrics, 5, 390-455. https://doi.org/10.1093/jjfinec/nbm009
  12. Kloeden, P. and Platen, E. (1999). Numerical Solution of Stochastic Differential Equations, Springer.
  13. Oksendall, B. (2003). Stochastic Differential Equations: An Introduction with Applications, Springer.
  14. Vasicek, O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188. https://doi.org/10.1016/0304-405X(77)90016-2