DOI QR코드

DOI QR Code

Design of the GLR Chart in Integrated Process Control

통합공정관리에서 일반화가능도비 관리도의 설계

  • 천가영 (중앙대학교 수학통계학부) ;
  • 이재헌 (중앙대학교 수학통계학부)
  • Received : 20100300
  • Accepted : 20100400
  • Published : 2010.05.31

Abstract

This paper considers the integrated process control procedure for detecting special causes in an IMA(1,1) noise process that is being adjusted using a minimum mean squared error adjustment. As a SPC procedure, we use a GLR chart for detecting special causes whose effects are the sustained shift or the sustained drift in the process mean, and the sustained shift in the process variance. For the design of the GLR chart, we derive expressions for the control limit which accurately satisfies the given in-control ARL.

통합공정관리란 잡음이 내재하는 공정에 대하여 수정조치를 취하고, 수정활동 중 공정에 이상원인이 발생하면 이를 관리도를 통해 탐지하여 제거하는 절차를 일컫는다. 이 논문에서는 공정의 잡음모형으로 IMA(1,1) 모형을 가정하고 최소평균제곱오차 수정절차를 수행할 때 일반화가능도비 관리도를 사용하여 이상원인을 탐지하는 절차를 고려하고 있으며, 이러한 상황에서 일반화가능도비 관리도의 관리한계를 설정하는 설계 방법을 제안하였다. 이상원인의 효과로는 공정 평균의 지속적 변화와 지속적 흐름 그리고 공정 분산의 지속적 변화를 고려하였다.

Keywords

References

  1. Apley, D. W. and Shi, J. (1999). The GLRT for statistical process control of autocorrelated processes, IIE Transactions, 31, 1123-1134.
  2. Box, G. E. P. and Kramer, T. (1992). Statistical process control and feedback adjustment - A discussion, Technometrics, 34, 251-285.
  3. Park, C. and Lee, J. (2008). An integrated process control scheme based on the future loss, The Korean Journal of Applied Statistics, 21, 247-264. https://doi.org/10.5351/KJAS.2008.21.2.247
  4. Park, C. and Lee, J. (2009). A Readjustment procedure after signalling in the integrated process control, Communications of the Korean Statistics Society, 16, 429-436. https://doi.org/10.5351/CKSS.2009.16.3.429
  5. Reynolds, M. R., Jr. and Stoumbos, Z. G. (2004a). Control charts and the efficient allocation of sampling resources, Technometrics, 46, 200-214. https://doi.org/10.1198/004017004000000257
  6. Reynolds, M. R., Jr. and Stoumbos, Z. G. (2004b). Should observations be grouped for effective process monitoring?, Journal of Quality Technology, 36, 343-366. https://doi.org/10.1080/00224065.2004.11980283
  7. Reynolds, M. R., Jr. and Stoumbos, Z. G. (2005). Should Shewhart limits be used with exponentially weighted moving average and cumulative sum charts?, Technometrics, 47, 409-424. https://doi.org/10.1198/004017005000000382
  8. Vander Wiel, S. A. (1996). Monitoring processes that wander using integrated moving average models, Technometrics, 38, 139-151. https://doi.org/10.2307/1270407