References
- Baker, F. B. and Hubert, L. J. (1975). Measuring the power of hierarchical cluster analysis, Journal of the American Statistical Association, 70, 31-38. https://doi.org/10.2307/2285371
- Bohte, Z., Cepar, D. and Kosmelij, K. (1980). Clustering of time series, In Proceedings of COMPSTAT, 587-593.
- Brillinger, D. (1981). Time Series: Data Analysis and Theory, Holden-Day, San Francisco.
- Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer-Verlag, New York.
- Caiado, J., Crato, N. and Pena, D. (2006). A periodogram-based metric for time series classification, Computational Statistics and Data Analysis, 50, 2668-2684. https://doi.org/10.1016/j.csda.2005.04.012
- Chatfield, C. (1975). The Analysis of Time Series: Theory and practice, Chapman & Hall, London.
- Chen, G., Abraham, B. and Peiris, S. (1994). Lag window estimation of the degree of differencing in fractionally integrated time series models, Journal of Time Series Analysis, 15, 473-487. https://doi.org/10.1111/j.1467-9892.1994.tb00205.x
- Corduas, M. and Piccolo, D. (2008). Time series clustering and classification by the autoregressive metric, Computational Statistics and Data Analysis, 52, 1860-1872. https://doi.org/10.1016/j.csda.2007.06.001
- Cowpertwait, P. S. P. and Cox, T. F. (1992). Clustering population means under heterogeneity of variance with an application to a rainfall time series problem, The Statistician, 41, 113-121. https://doi.org/10.2307/2348642
- Galeano, P. and Pena, D. (2000). Multivariate analysis in vector time series, Resenhas, 4, 383-403.
- Golay, X., Kollias, S., Stoll, G., Meier, D., Valvanis, A. and Boesiger, P. (1998). A new correlation-based fuzzy logic clustering algorithm for fMRI, Magnetic Resonance in Medicine, 40, 249-260. https://doi.org/10.1002/mrm.1910400211
- Goutte, C., Toft, P., Rostrup, E., Nielsen, F. A. and Hansen, L. K. (1999). On clustering fMRI time series, Neuroimage, 9, 298-310. https://doi.org/10.1006/nimg.1998.0391
- Kakizawa, Y., Shumway, R. H. and Taniguchi, M. (1998). Discrimination and clustering for multivariate time series, Journal of American Statstical Association, 93, 328-340. https://doi.org/10.2307/2669629
- Kovacic, Z. J. (1996). Classification of time series with applications to the leading indicator selection, In Proceedings of the Fifth Conference of IFCS, 2, 204-207.
- Kullback, S. (1978). Information Theory and Statistics, Peter Smith, Gloucester, Massachusetts.
- Kullback, S. and Leibler, R. A. (1951). On information and sufficiency, Annals of Mathematical Statistics, 22, 79-86. https://doi.org/10.1214/aoms/1177729694
- Macchiato, M., La Rotonda, L., Lapenna, V. and Ragosta, M. (1995). Time modelling and spatial clustering of daily ambient temperature an application in Southern Italy, Environmetrics, 6, 31-53. https://doi.org/10.1002/env.3170060105
- Maharaj, E. A. (2000). Cluster of time series, Journal of Classification, 17, 297-314. https://doi.org/10.1007/s003570000023
- Park, M. S. and Kim, H.-Y. (2008). Classification of precipitation data based on smoothed periodogram, The Korean Journal of Applied Statistics, 21, 547-560. https://doi.org/10.5351/KJAS.2008.21.3.547
- Pena, D. and Poncela, P. (2006). Nonstationary dynamic factor models, Journal of Statistical Planning and Inference, 136, 1237-1257. https://doi.org/10.1016/j.jspi.2004.08.020
- Piccolo, D. (1990). A distance measure for classifying ARIMA models, Journal of Time Series Analysis, 11, 153-164. https://doi.org/10.1111/j.1467-9892.1990.tb00048.x
- Priestley, M. B. (1981). Spectral Analysis and Time Series, Academic Press, New York.
- R Development Core Team (2006). R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
- Shumway, R. H. (2003). Time-frequency clustering and discriminant analysis, Statistics and Probability Letters, 63, 307-314. https://doi.org/10.1016/S0167-7152(03)00095-6
- Wismuller, A., Lange, O., Dersch, D. R., Leinsinger, G. L., Hahn, K., Putz, B. and Auer, D. (2002). Cluster analysis of biomedical image time-series, International Journal of Computer Vision, 46, 103-128. https://doi.org/10.1023/A:1013550313321