DOI QR코드

DOI QR Code

Palladium Nanoparticles Suspended in an Ionic Liquid as Reusable Catalyst for Alkyne Semihydrogenation

  • Lee, Jin-Kyu (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Dae-Won (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Lee, Hyun-Joo (Energy division, Korea Institute of Science and Technology) ;
  • Cho, Byung-Won (Energy division, Korea Institute of Science and Technology) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University) ;
  • Mukherjee, DebKumar (Department of Chemistry and Research institute for Basic Sciences, Kyung Hee University)
  • Received : 2010.05.19
  • Accepted : 2010.06.08
  • Published : 2010.08.20

Abstract

The reaction of $PdCl_2$ dispersed in tetra-n-butylammonium bromide with tributyl amine at $120^{\circ}C$ under argon leads to stable isolable nanometric particles. X-ray diffraction analysis of the material indicated that it is constituted of Pd(0). Transmission electron microscopy analysis of the particles dispersed in acetone shows the mean particle size distribution ($4{\pm}1\;nm$). The isolated palladium nanoparticles can be dispersed in an ionic liquid or in methanol or used in solventless condition for selective hydrogenation of 2-hexyne under mild reaction conditions(0.2 MPa and $20^{\circ}C$). The commercial variety of the Lindlar catalyst was also studied for comparative investigations.

Keywords

References

  1. Duca, D.; Frusteri, F.; Parmaliana, A.; Deganello, G. Appl. Catal. A 1996, 146, 269. https://doi.org/10.1016/S0926-860X(96)00145-7
  2. Albers, P.; Seibold, K.; Prescher, G.; Muller, H. Appl. Catal. A 1999, 176, 135. https://doi.org/10.1016/S0926-860X(98)00325-1
  3. Arena, F.; Cum, G.; Gallo, R.; Parmaliana, A. J. Mol. Catal. A: Chem. 1996, 110, 235. https://doi.org/10.1016/1381-1169(96)00188-4
  4. Shin, E. W.; Choi, C. H.; Chang, K. S.; Na, Y. H.; Moon, S. H. Catal. Today 1998, 44, 137. https://doi.org/10.1016/S0920-5861(98)00184-9
  5. Asplund, S. J. Catal. 1996, 158, 267. https://doi.org/10.1006/jcat.1996.0026
  6. Larsson, M.; Jansson, J.; Asplund, S. J. Catal. 1998, 178, 49. https://doi.org/10.1006/jcat.1998.2128
  7. Edvinsson, R. K.; Holmgren, A. M.; Irandoust, S. Ind. Eng. Chem. Res. 1995, 34, 94. https://doi.org/10.1021/ie00040a007
  8. Jackson, S. D.; Kelly, G. J. Curr. Topic Catal. 1997, 1, 47.
  9. Jackson S. D.; Shaw, L. A. Appl. Catal. A 1996, 134, 91. https://doi.org/10.1016/0926-860X(95)00194-8
  10. Dobrovolna, Z.; Kacer, P.; Cerveny, L. J. Mol. Catal. A. Chem. 1998, 130, 279. https://doi.org/10.1016/S1381-1169(97)00219-7
  11. Duca, D.; Arena, F.; Parmaliana, A.; Deganello, G. Appl. Catal. A 1998, 172, 207. https://doi.org/10.1016/S0926-860X(98)00123-9
  12. Duca, D.; Liotta, L. F.; Deganello, G. J. Catal. 1995, 154, 69. https://doi.org/10.1006/jcat.1995.1148
  13. Bensalem, A.; Bozon Verduraz, F. React. Kinet. Catal. Lett. 1997, 60, 71. https://doi.org/10.1007/BF02477692
  14. Mastalir, A.; Kiraly, Z. J. Catal. 2003, 220, 372. https://doi.org/10.1016/S0021-9517(03)00269-0
  15. Basile, F.; Fornasari, G.; Gazzano, M.; Vaccari, A. Appl. Clay Sci. 2000, 16, 185. https://doi.org/10.1016/S0169-1317(99)00053-8
  16. Choudhary, B. M.; Kantam, M. L.; Reddy, N. M.; Rao, K. K.; Harita, Y.; Bhaskar, V.; Figueras, F.; Tuel, A. Appl. Catal. A 1999, 181, 139. https://doi.org/10.1016/S0926-860X(98)00390-1
  17. Molnar, A.; Sarkany, A.; Varga, M. J. Mol. Catal. A Chem. 2001, 173, 185. https://doi.org/10.1016/S1381-1169(01)00150-9
  18. Hub, S.; Hilaire, L.; Touroude, R. Appl. Catal. 1988, 36, 307. https://doi.org/10.1016/S0166-9834(00)80124-4
  19. Boittiaux, J. P.; Cosyns, J.; Vasudevan, S. Appl. Catal. 1983, 6, 41. https://doi.org/10.1016/0166-9834(83)80186-9
  20. Gigola, C. E.; Aduriz, H. R.; Bodnariuk, P. Appl. Catal. 1986, 27, 133. https://doi.org/10.1016/S0166-9834(00)81052-0
  21. Ryndin, Y. A.; Nosova, L. V.; Boronin, A. I.; Chuvilin, A. L. Appl. Catal. 1988, 42, 131. https://doi.org/10.1016/S0166-9834(00)80081-0
  22. Le Bras, J.; Mukherjee, D. K.; Gonzalez, S.; Tristany, M.; Ganchegui, B.; Moreno-Manas, M.; Pleixats, R.; Henin, F.; Muzart, J. New J. Chem. 2004, 28, 1550. https://doi.org/10.1039/b409604e
  23. Narayanan, R.; El-Sayeed, M. A. J. Phys. Chem. B 2005, 109, 12663. https://doi.org/10.1021/jp051066p
  24. Astruc, D.; Lu, F.; Aranzaes, J. R. Angew. Chem. Int. Ed. 2005, 44, 7852. https://doi.org/10.1002/anie.200500766
  25. Tessier, D.; Rakai, A.; Bozon-Verduraz, F. Bull. Soc. Chim. Fr. 1996, 133, 637.
  26. Marvell, E. N.; Li, T. Synthesis 1973, 1, 457.
  27. Raphael, R. A. Acetylenic Compounds in Organic Synthesis; Butterworth:Stoneham, MA, 1955.
  28. Bailey, S., King, F., Sheldon, R. A., Van Bekkum, H., Eds.; Fine Chemicals through Heterogenous Catalysis; Wiley: New York, 2001; p 351.
  29. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S. Bull. Korean Chem. Soc. 2010, 31, 351. https://doi.org/10.5012/bkcs.2010.31.02.351
  30. Ranu, B. C.; Chattopadhyay, K. Org. Lett. 2007, 9, 2409. https://doi.org/10.1021/ol0708121
  31. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. https://doi.org/10.1021/cr010350j
  32. Scheeren, C. W.; Machado, G.; Dupont, J.; Fichtner, P. F. P.; Teixeira,S. R. Inorg. Chem. 2003, 42, 4738. https://doi.org/10.1021/ic034453r
  33. Mukherjee, D. K.; Ghosh, N. Bull. Catal. Soc. Ind. 2006, 5, 155.
  34. Mukherjee, D. K. J. Nanoparticle Res. 2008, 10, 429. https://doi.org/10.1007/s11051-007-9270-2
  35. Reetz, M. T.; Maase, M. Adv. Mater. 1999, 9, 11.
  36. Semagina, N.; Renken, A.; Laub, D.; Kiwi-Minsker, L. J. Catal. 2007, 246, 308. https://doi.org/10.1016/j.jcat.2006.12.011
  37. Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; DeSouza, R. F.; Dupont, J. Polyhedron 1996, 15, 1217. https://doi.org/10.1016/0277-5387(95)00365-7
  38. Siegel, S.; Hawkins, J. A. J. Org. Chem. 1986, 51, 1638. https://doi.org/10.1021/jo00359a063
  39. Mastalir, A.; Kiraly, Z.; Szollosi, G.; Bartok, M. Appl. Catal. A Gen. 2001, 213, 133.
  40. Petro, J. In Contact Catalysis; Szabo, Z, G., Kallo, D., Eds.; Elsevier: Amsterdam, 1976; Vol. II.
  41. Maier, W. F.; Chettle, S. B.; Rai, R. S.; Thomas, G. J. Am. Chem. Soc. 1986, 108, 2608. https://doi.org/10.1021/ja00270a019
  42. Ulan, J. G.; Maier, W. F. J. Org. Chem. 1987, 52, 3132. https://doi.org/10.1021/jo00390a032
  43. Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. J. Am. Chem. Soc. 2002, 124, 4228. https://doi.org/10.1021/ja025818u
  44. Dupont, J.; De Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. https://doi.org/10.1021/cr010338r
  45. Dullius, J. E. L.; Suarez, P. A. Z.; Einloft, S.; de Souza, R. F.; Dupont, J. Organometallics 1998, 17, 815. https://doi.org/10.1021/om970982p

Cited by

  1. Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3712
  2. Chemicals from Alkynes with Palladium Catalysts vol.114, pp.3, 2014, https://doi.org/10.1021/cr400133p
  3. Microcapsules: Particulated Ionic Liquid as A New Material for the Heterogenization of Catalysts vol.26, pp.16, 2014, https://doi.org/10.1021/cm501840d
  4. Highly cis-selective and lead-free hydrogenation of 2-hexyne by a supported Pd catalyst with an ionic-liquid layer vol.50, pp.72, 2014, https://doi.org/10.1039/C4CC04183F
  5. Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids vol.10, pp.None, 2019, https://doi.org/10.3762/bjnano.10.171