References
- Qingbing Liu, Guoliang Chen, Jing Cai, Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices, Computer Math. Appl. 56 (2008) 2048-2053. https://doi.org/10.5831/HMJ.2010.32.3.399
- T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving the Gauss-Seidel method for Z-matrices, Linear Algebra Appl., 267 (1997) 113-123. https://doi.org/10.1016/S0024-3795(97)80045-6
- M.T. Darvishi, P. Hessari, B.-Y. Shin, Preconditioned modified AOR method for systems of linear equations, Comm. Numer. Meth. Engng., (in press), doi:10.1002/cnm.1330.
- A. Neumaier, On the comparison of H-matrices with M-matrices, Linear Algebra Appl. 83 (1986) 135-141. https://doi.org/10.1016/0024-3795(86)90270-3
- C. Li, D.J. Evans, Improving the SOR method, Technical Report 901, Department of computer studies, University of Loughborough, 1994.
- A. Berman, R.J. Leramons, Nonnegative matrices in the mathematics sciences, SIAM, Philadelphia, PA, 1994.
- R.S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962; Springer Series in Computational Mathematics, vol. 27, Springer-Verlag, Berlin. 2000.
- W. Li, W.W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Linear Algebra Appl. 317 (2000) 227-240. https://doi.org/10.1016/S0024-3795(00)00140-3
- D.M. Young, Iterative solution for large linear systems, Academic press, New York, (1971).
- Y.Z. Song, Comparisons of nonnegative splitting of matrices, Linear Algebra Appl. 154-156 (1991) 433-455. https://doi.org/10.1016/0024-3795(91)90388-D
- Y.T. Li, S. Yang, A multi-parameters preconditioned AOR iterative method for linear systems, Appl. Math. Comput. 206 (2008) 465-473. https://doi.org/10.1016/j.amc.2008.09.032
Cited by
- CONVERGENCE ANALYSIS OF PRECONDITIONED AOR ITERATIVE METHOD vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.399