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CONVERGENCE ANALYSIS OF PRECONDITIONED
AOR ITERATIVE METHOD

P. HEssARI®, M. T. Darvisar’, B.-C. SHIN®!

Abstract. In this paper, we consider a preconditioned accelerated
overrelaxation (PAOR) method to solve systems of linear equations.
We show the convergence of the PAOR method. We also give com-
parison results when the coefficient matrix is an L- or H-matrix.
Finally, we provide some numerical experiments to show efficiency
of PAOR method.

1. Introduction

Consider the following linear system of n equations
(1) Ax=Db
where A = (a;;) € R"*™ is an n X n nonsingular matrix, and x, b € R".
If A is splitted into
A=M — N,
where M is a nonsingular matrix, then the basic splitting iterative
method can be expressed as:

(2) xFH) = A=t Nx®) 4 A, k=0,1,2,--.

As it is well known, the above iterative method is convergent to the
unique solution z = A~!b for each initial value z() if and only if the
spectral radius of the iteration matrix M !N satisfies p(M~IN) < 1.
To improve the convergence rate of the basic iterative method, several
preconditioned iterative methods have been proposed (see, e.g., [1, 2, 3]).
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The main idea of these preconditioned iterative methods is to transform
the original system into the preconditioned form

(3) PAx = Pb

where P € R™" is a nonsingular matrix. Then the basic iterative
scheme of the preconditioned system is given by

(4) xE+D) = MoINpx® - Moe,  k=0,1,2,---,

where PA = Mp — Np with a nonsingular matrix Mp.
Without loss of generality, suppose that the coefficient matrix A has
the following splitting
A=T-L-U

where 7 is identity matrix, —£ and —U are strictly lower and upper
triangular matrix of A, respectively. For this splitting, the AOR iterative
method is as follows:

(5) Y = L,2® + (T —rL) b, i=0,1,2,--,
where
Ly =(Z - 7"[,)_1[(1 —w)Z + (w—7)L + wl]

is the iteration matrix and r,w are acceleration parameters with w # 0.

Liu et al. [1] considered P = I+ S as a preconditioner and gave the
sufficient conditions for convergence of the Gauss-Seidel method when
the coefficient matrix A is an H-matrix, where

0 0 . e 0
—Braz 0 e 0 0
Sp = 0 —feazy - 0 0
0 0 T _ﬁnflan,nfl 0
whereas 3; > 0,i=1,---,n— 1.
Consider the preconditioned linear system
(6) .ABX = bﬁ

where Ag = (I + 5S3)A and bg = (I 4+ S3)b.

In this paper, we will show the convergence analysis for the precon-
ditioned AOR method when the coefficient matrix A is an L- or an
H-matrix.
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2. Preliminaries

For convenience, some notations, definitions and some results that
will be used in the next sections are given.

A matrix A is called nonnegative(positive) if each entry of A is
nonnegative(positive). We denote it by A > 0(> 0). Similarly, for
n—dimensional vectors x, by identifying them with n x 1 matrices, we
can also define x > 0(> 0). Denote by p(A) the spectral radius of A.

Definition 2.1. [6] A real matrix A is called an M-matrix if A =
sI — B, B>0 and s > p(B).

Definition 2.2. [7, 9] A matrix A = (a;;) is called
1. a Z-matrix if a;; <0 fori,j = 1,2,--- ,n such that i # j,
2. an L-matrix if a;; < 0 fori,j =1,2,--- ,n, (i # j) and a; > 0,
i:112a"' » 1,
3. an H-matrix if its comparison matrix (A) = (a;;) is a nonsingular
M-matrix, where a;; is
agi = |agl, aij = —laijl, i #J.
It must be noted that an L-matrix A is a nonsingular M-matrix if A
is nonsingular and A~! > 0.

Definition 2.3. [7] A matrix A is irreducible if the directed graph
associated to A is strongly connected.

Definition 2.4. Let A be a real matrix. The representation
A=M-N

is called a splitting of A if M is a nonsingular matrix. The splitting is
said to be

1. convergent if p(M~'N) < 1;

2. regular if Mt >0 and N > 0;

3. nonnegative if M—'N > 0;

4. M-splitting if M is a nonsingular M-matrix and N > 0.

It is obvious that an M-splitting is regular and a regular splitting is
nonnegative.

Lemma 2.5. [7] Let A > 0 be an irreducible n x n matrix. Then

1. A has a positive real eigenvalue equal to its spectral radius p(A),
2. for p(A) there corresponds an eigenvector x > 0,
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3. p(A) is a simple eigenvalue of A,
4. p(A) increases when any entry of A increases.

Lemma 2.6. [6] Let A be a nonnegative matrix.

1. If ax < Az for some nonnegative vector z,x # 0, then a < p(A).
2. If Ax < Bz for some positive vector x, then p(A) < f3.

Moreover, if A is irreducible and if 0 # ax < Ax < Bz for some nonneg-
ative vector z, then o < p(A) < 8 and z is a positive vector.

Lemma 2.7. [8] Let A = M — N be an M-splitting of A. Then
p(M~'N) < 1 if and only if A is a nonsingular M-matrix.

Theorem 2.8. [6] Let A be a Z-matrix. Then the following state-
ments are equivalent:

1. A is nonsingular M -matrix.

2. There is a positive vector x such that Az > 0.

3. All principal submatrices of A are M-matrices.

Lemma 2.9. Let A be a Z-matrix. Then A is a nonsingular M-
matrix if and only if Ag is a nonsingular M-matrix for §; € [0,1],i =
1,2, ,n—1.

Proof. Let A be a nonsingular M-matrix. We have

Ag= (I + Sp)A =
1 a2 E ain
az1 — Prazi 1 — Brazia12 E agn—
Bras1ain
anl — ﬁnflan,nflanfl,l an2 — ﬁnflan,nflanflﬁ ce 1-
ﬁnflan,nfl
an—1,n

Suppose that A is a nonsingular M-matrix, then by Theorem 2.8,
there exists a positive vector x such that Ax > 0. On the other hand,
since A is a Z-matrix, Sg > 0. So for the above vector z, we have
Apgx = (I +S5g)Ax > 0. Hence, by Theorem 2.8, Ag is a nonsingular M-
matrix. Note that if Ag be an M-matrix, then .Ag is also an M-matrix.
By Theorem 2.8, there exists a positive vector x such that Agx > 0,

so AT(I + Sg)x >0.Sety =1+ SﬁT)x. Then, we have y > 0 and
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ATy > 0, which means that A” is a nonsingular M-matrix, hence, A is
also a nonsingular M-matrix. O

3. The preconditioned AOR method for L-matrices

In this section, we consider the preconditioned linear system
Agx = bﬁ

where Ag = (I + S3)A and bg = (I + Sg)b. We split the coefficient
matrix Ag as

As =Dp — L —Ug
where Dg, —Lg, and —Us are the diagonal, strictly lower and strictly
upper triangular matrices of Ag, respectively. Then the preconditioned
AOR iterative method is as follows:

(7)) xUY =L,xD 4 w(Dg—rLs)tbs, i=0,1,2,---,
where

Lrw = (Dg —1L3) (1 — w)Dpg + (w — 1) L5 + wldg]
is the iteration matrix.

Lemma 3.1. Let A and Ag be the coefficient matrices of linear
system (1) and (6), respectively. Suppose that A is irreducible L-matrix
and 0 <r <w<1(r+#1,w#0).

1. The iterative matrix Ly, in (5) is a nonnegative irreducible matrix.

2. If there exists a nonempty set « C Q@ ={2,3,--- ,n} such that

0< Qi i—10i—15 < 1, i€« and Qji—10i—15 = 0, 1 € Q\Oé,
then Ly, in (7) is a nonnegative irreducible matrix.

Proof. (a) Note that
Liw = (Z—7L)7"H(1 —w)I+ (w—7)L+ wl]

=T +rL+r2L2 4 I H (1 = )T+ (w— 1)L+ W]
=1-wI+w—-—r)L+wld+rL[(l—-w)I+ (w—7r)L+wl]
+[r2L2 4+ L[ - W) T+ (w - 7) L+ W]
=1l-wI+wl-r)L+wld+T
where
T = rL{(w—r)LAwl]+[r2 L%+ - +r" L LY [(1—w) I+ (w—7) L4wld] > 0.

Since A is an L-matrix, it holds that Z > 0, £ > 0 and U4 > 0, using
the fact that 0 <r <w < 1(r # 1,w # 0), we have L, > 0. Since A is
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an irreducible matrix, so is (1 — w)Z + w(1 —r)L + wl. Thus L,,, is an
irreducible matrix.
(b) Note that

Lyw = (Dg — Tﬁg)_l[ 1 —w)Ds+ (w—r1)Ls + wldg]
= (T —rD5'Ls) (1 —w)T + (w—7)Dy' L+ wDy'Up]
= (1—w)I+w(l—r)Dy'Ly+wDy;'Us +Tp
where
T3 = TD/gl,Cg[(w — ’I“)'Dglﬁﬁ + uﬂ)glUg]
(D L) 4 4 (D L) )
[(1—w)D5! + (w =) (D' Ls) + w(D5'Up)] > 0.
By similar arguments given in proof of (a), we can easily show that

Ly, > 0. Since 0 < @B < 1, it is obvious that A is an irreducible
matrix. Thus L, is a nonnegative irreducible matrix. O

Theorem 3.2. Let A € R™" be a nonsingular L-matrix. Assume
that 0 <r <w <1(r # 1,w#0), and 0 < 3; <1 but fi_1a;,—1 # 0 for
somei=1,2,--- n—1.

(a) If p(Ly,) < 1, then p(Lyy) < p(Lyp,) < 1.
(b) If A is an irreducible matrix and if there exists a non-empty set
aC@Q=1{2,3,---} such that

0< Qii—10i—14 < 1, i€a, and Qji—1Q5—14 = 0, z2¢€ Q\a,
then it holds that

p(Lry) < p(Lry) it p(Lew) < 1;
p(l;/rw) = p(Lrw) if p(Lrw) =1
p(Lrw) > p(Lrw) if p(Lyw) > 1.
Proof. Let
M=LX1T-rr),
N=L1 - 0T+ w-rL+eu),
By = (Dg —1Lp),

1
Fy = 1[(1 = w)Dg + (w — r)Lg + wlly),

Mg = L(T + 83)(T - rL),
No = ST+ 85)[(1 )T + (w— 1)L + ).

Then we have the following splitting
A=M - N and AﬁzEﬁ—FQZMﬁ—Nﬁ.
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(a) Since A is an L-matrix and 0 < r < w < 1(r # l,w # 0), M =
%(Z —rL) is a nonsingular M-matrix and N > 0 so that A =M — N
is an M-splitting. By the fact that p(L,,) < 1 and Lemma 2.7, A is
a nonsingular M-matrix. We also show that Ag is a nonsingular M-
matrix using Lemma 2.9.

Since Ag is a nonsingular M-matrix, (Dg);; > 0 and Dy is invertible.
Using the fact that (£3)ij = —asj + fi—1aii-1ai—15 > 0, fori =3,--- | n,
Jj < i—2,and (£g)ii-1 = —a;;i—1(1 — Bi—1) > 0,4 = 2,--- ,n, we
have Lg > 0 so that Eg = 1(Dg — rLp) is a Z-matrix and it is also a
nonsingular M-matrix. By our assumptions, Fj is a nonnegative matrix
so that Ag = Fg — Fj is an M-splitting. Thus by Lemma 2.7, we have

p(irw) = p(Eﬁ_lF/B) <1l

Using the fact that A = M — N, Ag = Eg — Fjg are M-splitting and
M-IN=M 5 N 3 yields that two splittings are regular and nonnegative.
On the other hand, Az can be represented as

Ag=(Z+Sg)A=T—-L—-U+Sz—SgL — SpU.

Denote by So = SgL. Then S5 is a strictly lower triangular matrix. Let
SpU = S1+S53 where S7 and S3 are diagonal and strictly upper triangular
matrix of Sgl, respectively. Then Dg = I — Si, Lg = L — Sg + 5o,
Uz =U + S3, and

.,45:I—ﬁ—U—FSg—Sl—Sg—ng'Dﬂ—ﬁﬁ—Z/lg.
Note that
1
Np = Fy == —(T + 85)[(1 — )T + (w — 1)L +wld]

~ {1~ 0)Dp + (w0~ 1)L + wlhy]

= (1= )T = D) + (= )L — L) +wltd ~ )
+ (1 —w)Sg+ (w—1)Se +w(S1 + S3)]
= ~[(1~w)(T ~ Dp) + (w ~r)(S5 — 52) — wSy
+ (1 —w)Sg+ (w—1)Se +w(S1 + S3)]
= (1= w)(Z ~ Dg) + (1-1)S5 +wSi] > 0.
Thus Ng > Fjg and Ag + Ng > Ag + Fp. Furthermore we have
Mg > Eg and Az'Mz> Aj'Ez>0.



406 P. Hessari®, M. T. Darvishi®, B.-C. Shin®*

By Theorem 1.1 in [10], we have
p(E5" Fg) < p(My "' Ng).
Hence
P(irw) < p(Lpw) < 1.

(b) Let A be an irreducible matrix. By Lemma 3.1, L, is a nonneg-
ative and irreducible matrix, and by Lemma 2.5, there exists a positive
vector x such that

L.,x=)x
where A\ = p(L;). Thus we can easily show that
(1-wZI+ (w—r)L+wllx=XNZ—-rL)x
or equivalently
(1-—w—-NIT+ (w—r+rN)L+wl]x =
and
A=1DZ-rL)x=w(L+U-T)x.
For the above A and x we have
IN/rwx —AX =
= (Dg —rLp) (1 —w)Ds + (w—7)Ls +wlhs — N(Ds — rLg)|x
= (Dg—7Ls) (1l —w—NDg+ (w—7+7\)Ls + wlls]x
= (Dg — r[,ﬁ)_l[(l —w—=ANZ-51)+(w—r+rX)(L—-Sg+5)
+wU + S3)]x
= (D —7Ls) (A +w—1)S1 + (w—7+7A)(S2 — Sp) + wSs]x
= (D —1Ls) (A —1)S1 + w(S1 + Sg — Sz + S3) + (M — 1)

(S2 — Sp)lx
= (D —1Ls) (A= 1)S1 +w(SaU + SsL — Sp) +r(1 — \)
(Sp — S2)lx

= (D —7Ls) (A= 1)S1 +wSsU + L —T) +7(1 — A\)(Sp — S2)]x
= (Dg—7rLp) A= 1)S1 + (A= 1)(1 —7)Sps]x,
where S1 > 0, Sg > 0 and 1 —r > 0. Therefore
LrwX —Ax = (A= 1)(Dg — L) " [S1 + (1 — r)Ss]x.

If XA <1, theanx—)\x<Oand Lywx — Ax #£ 0, i.e. Lywx < Ax
andex#/\x Ifx=1, theanx—)\x—O ie. Lypyx = Mx. If

A > 1 then Lrwx—)\x>0and me—)\x;ﬁ(] i.e. Lpyx > Ax and
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L,,x # Ax. Using the above estimates and Lemma 2.6, we can easily
prove the conclusion of (b) and it completes the proof. O

It is well known that by taking a special value w = r in AOR method,
we obtain the SOR iteration. Hence we have the following result.

Corollary 3.3. Let A € R™™™ be a nonsingular L-matrix. Assume
that 0 < w < I(w # 0) and 0 < ; < 1 but f_1a;;—1 # 0 for some
i=1,2,- ,n— 1.

(a) If p(L,) < 1, then p(L,) < p(Ly,) < 1.

(b) If A is an irreducible matrix, and if there exists a non-empty set
aCQ={2,3,---,n} such that

0< Qii—10i—15 < 1, i€a and Qi i—10;—143 = 0, € Q\a,
then

p(i}w) < p(Lw) if p(Lw) < 1
p({/w) - p(Lw) if p(Lw) =1
p(Lw) > p(Ly) if  p(Ly) > 1.

4. The preconditioned AOR method for H-matrices

In this section, we show the convergence of the preconditioned AOR
method for the system (1) when the coefficient matrix 4 is an H-matrix.
First, we give some lemmas which are useful in the sequel.

Lemma 4.1. [4] Let A be an H-matrix. Then |A™Y| < (A), where
(A) denotes the comparison matrix given in Definition 2.

Lemma 4.2. [7] Let A and B be two nxn matrices with 0 < |B| < A.
Then p(B) < p(A).

By above lemmas we state and prove some lemmas and theorems.
Lemma 4.3. If A is a nonsingular M-matrix, then p(Ly,) < 1.

Proof. Since A is an M-matrix, it is an L-matrix so that M = %(I —
rL) is a nonsingular M-matrix and N = 1[(1 —w)Z(w —r)L +wld] > 0.

Hence A = M — N is an M-splitting, and by Lemma 2.7, p(M~'N) =
p(Lrw) < 1. O

Lemma 4.4. If A is an H-matrix, then p(Ly,) < 1.
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Proof. Let A be an H-matrix, then (A) is an M-matrix. By Lemma

4.3, p(Ly,) < 1 where

Lo = (I = r[L)7HA = )] + (w = r)|L] + w|U]].

Let
X=({I-rL),
Y=01-wl+(w-r)L+wl,
Z=(I—r|L)™,

T=(1-w)l+ (w-—r)Ll+w|U]|.

Obviously, X is an H-matrix and (X) = Z. By Lemma 4.1, | X 1| <
Z~1. Hence, we have

XY < XY < X T < 27T

and |L,,| < Lyo. From Lemma 4.2, we have p(L,,) < p(L;,) and this
completes the proof. O

Lemma 4.5. Let A be an H-matrix. Then

la;i—1| +1
laii—1(2][{A) oo — 1)

Bi=1+ > 1.

Proof. Since (A) = T — |L| — |U| < T is a nonsingular M-matrix,
(A1 >0and 0 <Z < (A)~L Thus |[{A) Yo > 1and then 8} > 1. O

Theorem 4.6. Let A be an H-matrix. Then Ag is an H-matrix and

p(Ly,) <1 for B; €10,0)),i=1,2,---,n—1.

Proof. Let r = (A)~le where e = (1,1,---,1)T. Since A is an H-
matrix, by Theorem 2.8, there exists a vector » > 0 such that (A)r =
e > 0. We show that (Ag) is an M-matrix. Note that

((Ag)r)1 =711 — Z laij|r; = ((A)r)1 > 0.

Jj=2
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Fori=2,--- ,n, we have
((Ag)r)i = 11 = Bicrasiraivalri = laij — Bic10ii-1ai-1,4lr
i
> 1 = Bic1laii—1ai-14ri — Z |ai;|r
-1
= > Bilaii1ai1lry — laii ||l = Bicalria
i1

> ((A)r)i +lagi—1|rio1 — Bicilasi—al[|ai—1]r
+ > laiaylrg] = lasiallt = Bicalria
i1
=1+ |aii1|ri-1 — Bi—1lasia|[—((A)r)i +ri1]
= laii—1||1 = Bicalri—a
=1+ ai-1|ric1 — Bictlaii—1|[=1 + ri—1] = |aii—1|[1 = Biz1|ri1
=1+ Bitlagi—1| +[1 = Bic1 — [1 = Bic1l]|asi—1]ri-1.
If0 < G; <1, then
((Ag)r)i = 1+ Bi—1|a;i—1| > 0.

Therefore, (Ag) is an M-matrix and Ag is an H-matrix.
If 6; > 1, then

((Ag)r)i =1+ 2|aji—1|ri—1 — (2ri-1 — 1) Bilaii—1]

laii—1]+1

>1+2|a;;-1|ri—1 — (2r;—1 — 1)1 +
(calrios = B = D 60T - 1)

]

|aii-1]
laii—1]+1
A o — 1)

> 1+ Jaii-1] — 2IA) oo — Daii1] @]
1,0—
=0.

Therefore, (Ag) is an M-matrix and Ag is an H-matrix, and by Lemma

4.4, p(Ly) < 1. 0

For the SOR iterative method, the following corollary holds.

Corollary 4.7. Let A be an H-matrix. Then Ag is an H-matrix
and p(Lw) <1 for ﬁz € [Oa/@@/)a = 1>2>"' y 1 — 1.
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5. Numerical experiments

In this section, we give some numerical examples to show efficiency
of the preconditioned AOR method.

Example 1. Suppose that the coefficient matrix A is as follows:

1 -0.1 —-0.06 —-0.35 —-0.22

—0.16 1 —-0.04 -0.08 —0.28

A= -0.2 =01 1 —-0.12 —-0.2
-0.06 -0.24 -0.17 1 —0.05

-0.32 -0.22 -0.1 -0.15 1

The coefficient matrix A is an L-matrix. Let 81 = 0.86, 83 = 0.79,
B3 = 0.95 and B4 = 0.92. For r = 0.3093, w = 0.9827, we have p(ﬂm) =
0.5760 < p(Ly) = 0.6107, and for r = w = 0.66 we get p(Ly) =
0.6735 < p(L,) = 0.6916.

The matrix A is also an H-matrix. Let 51 = 3, 02 = 2.6, 3 = 4 and
By = 2. For r = 0.3093 and w = 0.9827 we get p(L,.) = 0.4892 <
p(Ly) = 0.6107 and for r = w = 0.85 we get p(Ly,) = 0.5009 < p(Ly,) =
0.5536.

Example 2. Suppose that the coefficient matrix A is given by

1 1 S R S

1 2x10+1 3><110+1 n><110+1

_2><110+2 11 T 3%x10+2 e _n><110+2

A= T3x10+3 T 2x10+3 1 T T nxi0+3
1 . 1 1 1

" nx10+n (n—1)x104+n ~ (n—2)x10+n
We take 8; =0.98 for all i =1,2,--- ,n — 1. Table 1 shows the spectral

radii, p(Lyy,) and p(Ly,), of AOR method and the preconditioned AOR
method, respectively, for different values of n and various r and w. As

this table shows, we have p(L,,) < p(Ly) for each case.
Example 3. Suppose that the coefficient matrix A is as

1 02 -02 02 0.1
0.4 1 0.2 -0.2 0.1
A=1 -05 0.2 1 0.1 -0.1
03 —-06 0.3 1 0.1
0.8 03 -02 04 1
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TABLE 1. Numerical results for Example 2.

n T w p(Lro) P(Erw)
50 0.45 0.78 0.3902 0.3799
100 0.38 0.96 0.2903 0.2784
150 0.37 0.96 0.3076 0.2971
200 0.28 0.95 0.3399 0.3294

The coefficient matrix A is an H-matrix. Let 81 = 0.99, 85 = 0.
B3 = 0.56 and B4 = 0.87. For r = 0.35, w = 0.98, we have p(L.)
0.7533 < p(L;) = 0.7936, and for r = w = 0.88 we get p(L,)
0.7043 < p(L,) = 0.7323.

Let 81 = 2.5, B2 = 2.01, 83 = 2.92 and 34 = 2.21. For r = 0.58, w = 0.95,
we have p(f/m) = 0.6346 < p(L,,) = 0.7706, and for r = w = 0.89 we

get p(L,) = 0.6440 < p(L,,) = 0.7267.

8,
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