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CONVERGENCE ANALYSIS OF PRECONDITIONED
AOR ITERATIVE METHOD

P. Hessaria, M. T. Darvishib, B.-C. Shina,1

Abstract. In this paper, we consider a preconditioned accelerated
overrelaxation (PAOR) method to solve systems of linear equations.
We show the convergence of the PAOR method. We also give com-
parison results when the coefficient matrix is an L- or H-matrix.
Finally, we provide some numerical experiments to show efficiency
of PAOR method.

1. Introduction

Consider the following linear system of n equations

(1) Ax = b

where A = (aij) ∈ Rn×n is an n× n nonsingular matrix, and x,b ∈ Rn.
If A is splitted into

A = M −N,

where M is a nonsingular matrix, then the basic splitting iterative
method can be expressed as:

(2) x(k+1) = M−1Nx(k) + M−1b, k = 0, 1, 2, · · · .

As it is well known, the above iterative method is convergent to the
unique solution x = A−1b for each initial value x(0) if and only if the
spectral radius of the iteration matrix M−1N satisfies ρ(M−1N) < 1.
To improve the convergence rate of the basic iterative method, several
preconditioned iterative methods have been proposed (see, e.g., [1, 2, 3]).
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The main idea of these preconditioned iterative methods is to transform
the original system into the preconditioned form

(3) PAx = Pb

where P ∈ Rn×n is a nonsingular matrix. Then the basic iterative
scheme of the preconditioned system is given by

(4) x(k+1) = M−1
P NPx(k) + M−1

P b, k = 0, 1, 2, · · · ,

where PA = MP −NP with a nonsingular matrix MP .

Without loss of generality, suppose that the coefficient matrix A has
the following splitting

A = I − L − U
where I is identity matrix, −L and −U are strictly lower and upper
triangular matrix ofA, respectively. For this splitting, the AOR iterative
method is as follows:

(5) x(i+1) = Lrwx(i) + ω(I − rL)−1b, i = 0, 1, 2, · · · ,

where

Lrw = (I − rL)−1[(1− ω)I + (ω − r)L+ ωU ]

is the iteration matrix and r, ω are acceleration parameters with ω 6= 0.

Liu et al. [1] considered P = I +Sβ as a preconditioner and gave the
sufficient conditions for convergence of the Gauss-Seidel method when
the coefficient matrix A is an H-matrix, where

Sβ =




0 0 · · · · · · 0
−β1a21 0 · · · 0 0

0 −β2a32 · · · 0 0
...

... · · · . . .
...

0 0 · · · −βn−1an,n−1 0




whereas βi ≥ 0, i = 1, · · · , n− 1.

Consider the preconditioned linear system

(6) Aβx = bβ

where Aβ = (I + Sβ)A and bβ = (I + Sβ)b.

In this paper, we will show the convergence analysis for the precon-
ditioned AOR method when the coefficient matrix A is an L- or an
H-matrix.
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2. Preliminaries

For convenience, some notations, definitions and some results that
will be used in the next sections are given.

A matrix A is called nonnegative(positive) if each entry of A is
nonnegative(positive). We denote it by A ≥ 0(> 0). Similarly, for
n−dimensional vectors x, by identifying them with n × 1 matrices, we
can also define x ≥ 0(> 0). Denote by ρ(A) the spectral radius of A.

Definition 2.1. [6] A real matrix A is called an M -matrix if A =
sI −B, B ≥ 0 and s > ρ(B).

Definition 2.2. [7, 9] A matrix A = (aij) is called

1. a Z-matrix if aij ≤ 0 for i, j = 1, 2, · · · , n such that i 6= j,
2. an L-matrix if aij ≤ 0 for i, j = 1, 2, · · · , n, (i 6= j) and aii > 0,

i = 1, 2, · · · , n,
3. an H-matrix if its comparison matrix 〈A〉 = (āij) is a nonsingular

M -matrix, where āij is

āii = |ai,i|, āij = −|aij |, i 6= j.

It must be noted that an L-matrix A is a nonsingular M -matrix if A
is nonsingular and A−1 ≥ 0.

Definition 2.3. [7] A matrix A is irreducible if the directed graph
associated to A is strongly connected.

Definition 2.4. Let A be a real matrix. The representation

A = M −N

is called a splitting of A if M is a nonsingular matrix. The splitting is
said to be

1. convergent if ρ(M−1N) < 1;
2. regular if M−1 ≥ 0 and N ≥ 0;
3. nonnegative if M−1N ≥ 0;
4. M -splitting if M is a nonsingular M -matrix and N ≥ 0.

It is obvious that an M -splitting is regular and a regular splitting is
nonnegative.

Lemma 2.5. [7] Let A ≥ 0 be an irreducible n× n matrix. Then

1. A has a positive real eigenvalue equal to its spectral radius ρ(A),
2. for ρ(A) there corresponds an eigenvector x > 0,
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3. ρ(A) is a simple eigenvalue of A,
4. ρ(A) increases when any entry of A increases.

Lemma 2.6. [6] Let A be a nonnegative matrix.

1. If αx ≤ Ax for some nonnegative vector x, x 6= 0, then α ≤ ρ(A).
2. If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β.

Moreover, if A is irreducible and if 0 6= αx ≤ Ax ≤ βx for some nonneg-
ative vector x, then α ≤ ρ(A) ≤ β and x is a positive vector.

Lemma 2.7. [8] Let A = M − N be an M -splitting of A. Then
ρ(M−1N) < 1 if and only if A is a nonsingular M -matrix.

Theorem 2.8. [6] Let A be a Z-matrix. Then the following state-
ments are equivalent:

1. A is nonsingular M -matrix.
2. There is a positive vector x such that Ax > 0.
3. All principal submatrices of A are M -matrices.

Lemma 2.9. Let A be a Z-matrix. Then A is a nonsingular M -
matrix if and only if Aβ is a nonsingular M -matrix for βi ∈ [0, 1], i =
1, 2, · · · , n− 1.

Proof. Let A be a nonsingular M -matrix. We have

Aβ = (I + Sβ)A =



1 a12 · · · a1n

a21 − β1a21 1− β1a21a12 · · · a2n−
β1a21a1n

...
...

. . .
...

an1 − βn−1an,n−1an−1,1 an2 − βn−1an,n−1an−1,2 · · · 1−
βn−1an,n−1

an−1,n




.

Suppose that A is a nonsingular M -matrix, then by Theorem 2.8,
there exists a positive vector x such that Ax > 0. On the other hand,
since A is a Z-matrix, Sβ > 0. So for the above vector x, we have
Aβx = (I +Sβ)Ax > 0. Hence, by Theorem 2.8, Aβ is a nonsingular M -
matrix. Note that if Aβ be an M -matrix, then AT

β is also an M -matrix.
By Theorem 2.8, there exists a positive vector x such that AT

β x > 0,

so AT (I + ST
β )x > 0. Set y = (I + ST

β )x. Then, we have y > 0 and
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ATy > 0, which means that AT is a nonsingular M -matrix, hence, A is
also a nonsingular M -matrix.

3. The preconditioned AOR method for L-matrices

In this section, we consider the preconditioned linear system

Aβx = bβ

where Aβ = (I + Sβ)A and bβ = (I + Sβ)b. We split the coefficient
matrix Aβ as

Aβ = Dβ − Lβ − Uβ

where Dβ,−Lβ, and −Uβ are the diagonal, strictly lower and strictly
upper triangular matrices of Aβ, respectively. Then the preconditioned
AOR iterative method is as follows:

(7) x(i+1) = L̃rwx(i) + ω(Dβ − rLβ)−1bβ, i = 0, 1, 2, · · · ,

where

L̃rw = (Dβ − rLβ)−1[(1− ω)Dβ + (ω − r)Lβ + ωUβ]

is the iteration matrix.

Lemma 3.1. Let A and Aβ be the coefficient matrices of linear
system (1) and (6), respectively. Suppose that A is irreducible L-matrix
and 0 ≤ r ≤ ω ≤ 1(r 6= 1, ω 6= 0).

1. The iterative matrix Lrω in (5) is a nonnegative irreducible matrix.
2. If there exists a nonempty set α ⊂ Q = {2, 3, · · · , n} such that

0 < ai,i−1ai−1,i < 1, i ∈ α and ai,i−1ai−1,i = 0, i ∈ Q\α,

then L̃rw in (7) is a nonnegative irreducible matrix.

Proof. (a) Note that

Lrw = (I − rL)−1[(1− ω)I + (ω − r)L+ ωU ]
= (I + rL+ r2L2 + · · ·+ rn−1Ln−1)[(1− ω)I + (ω − r)L+ ωU ]
= (1− ω)I + (ω − r)L+ ωU + rL[(1− ω)I + (ω − r)L+ ωU ]

+[r2L2 + · · ·+ rn−1Ln−1][(1− ω)I + (ω − r)L+ ωU ]
= (1− ω)I + ω(1− r)L+ ωU + T

where

T = rL[(ω−r)L+ωU ]+[r2L2+· · ·+rn−1Ln−1][(1−ω)I+(ω−r)L+ωU ] ≥ 0.

Since A is an L-matrix, it holds that I ≥ 0, L ≥ 0 and U ≥ 0, using
the fact that 0 ≤ r ≤ ω ≤ 1(r 6= 1, ω 6= 0), we have Lrω ≥ 0. Since A is
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an irreducible matrix, so is (1− ω)I + ω(1− r)L+ ωU . Thus Lrw is an
irreducible matrix.
(b) Note that

L̃rw = (Dβ − rLβ)−1[(1− ω)Dβ + (ω − r)Lβ + ωUβ]
= (I − rD−1

β Lβ)−1[(1− ω)I + (ω − r)D−1
β Lβ + ωD−1

β Uβ]
= (1− ω)I + ω(1− r)D−1

β Lβ + ωD−1
β Uβ + Tβ

where

Tβ = rD−1
β Lβ[(ω − r)D−1

β Lβ + ωD−1
β Uβ]

+[r2(D−1
β Lβ)2 + · · ·+ rn−1(D−1

β Lβ)n−1]×
[(1− ω)D−1

β + (ω − r)(D−1
β Lβ) + ω(D−1

β Uβ)] ≥ 0.

By similar arguments given in proof of (a), we can easily show that
L̃rw ≥ 0. Since 0 < βi ≤ 1, it is obvious that Aβ is an irreducible
matrix. Thus L̃rw is a nonnegative irreducible matrix.

Theorem 3.2. Let A ∈ Rn×n be a nonsingular L-matrix. Assume
that 0 ≤ r ≤ ω ≤ 1(r 6= 1, ω 6= 0), and 0 < βi ≤ 1 but βi−1ai,i−1 6= 0 for
some i = 1, 2, · · · , n− 1.

(a) If ρ(Lrω) < 1, then ρ(L̃rω) < ρ(Lrω) < 1.
(b) If A is an irreducible matrix and if there exists a non-empty set

α ⊂ Q = {2, 3, · · · } such that

0 < ai,i−1ai−1,i < 1, i ∈ α, and ai,i−1ai−1,i = 0, i ∈ Q\α,

then it holds that



ρ(L̃rω) < ρ(Lrω) if ρ(Lrω) < 1;
ρ(L̃rω) = ρ(Lrω) if ρ(Lrω) = 1;
ρ(L̃rω) > ρ(Lrω) if ρ(Lrω) > 1.

Proof. Let

M = 1
ω (I − rL),

N = 1
ω [(1− ω)I + (ω − r)L+ ωU),

Eβ = 1
ω (Dβ − rLβ),

Fβ = 1
ω [(1− ω)Dβ + (ω − r)Lβ + ωUβ),

Mβ = 1
ω (I + Sβ)(I − rL),

Nβ = 1
ω (I + Sβ)[(1− ω)I + (ω − r)L+ ωU).

Then we have the following splitting

A = M −N and Aβ = Eβ − Fβ = Mβ −Nβ.
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(a) Since A is an L-matrix and 0 ≤ r ≤ ω ≤ 1(r 6= 1, ω 6= 0), M =
1
ω (I − rL) is a nonsingular M -matrix and N ≥ 0 so that A = M − N
is an M -splitting. By the fact that ρ(Lrw) < 1 and Lemma 2.7, A is
a nonsingular M -matrix. We also show that Aβ is a nonsingular M -
matrix using Lemma 2.9.
Since Aβ is a nonsingular M -matrix, (Dβ)i,i > 0 and Dβ is invertible.
Using the fact that (Lβ)ij = −aij +βi−1ai,i−1ai−1j ≥ 0, for i = 3, · · · , n,
j < i − 2, and (Lβ)i,i−1 = −ai,i−1(1 − βi−1) ≥ 0, i = 2, · · · , n, we
have Lβ ≥ 0 so that Eβ = 1

ω (Dβ − rLβ) is a Z-matrix and it is also a
nonsingular M -matrix. By our assumptions, Fβ is a nonnegative matrix
so that Aβ = Eβ − Fβ is an M -splitting. Thus by Lemma 2.7, we have

ρ(L̃rw) = ρ(E−1
β Fβ) < 1.

Using the fact that A = M − N, Aβ = Eβ − Fβ are M -splitting and
M−1N = M−1

β Nβ yields that two splittings are regular and nonnegative.
On the other hand, Aβ can be represented as

Aβ = (I + Sβ)A = I − L − U + Sβ − SβL − SβU .

Denote by S2 = SβL. Then S2 is a strictly lower triangular matrix. Let
SβU = S1+S3 where S1 and S3 are diagonal and strictly upper triangular
matrix of SβU , respectively. Then Dβ = I − S1, Lβ = L − Sβ + S2,
Uβ = U + S3, and

Aβ = I − L − U + Sβ − S1 − S2 − S3 = Dβ − Lβ − Uβ.

Note that

Nβ − Fβ ==
1
ω

(I + Sβ)[(1− ω)I + (ω − r)L+ ωU ]

− 1
ω

[(1− ω)Dβ + (ω − r)Lβ + ωUβ]

=
1
ω

[(1− ω)(I − Dβ) + (ω − r)(L − Lβ) + ω(U − Uβ)

+ (1− ω)Sβ + (ω − r)S2 + ω(S1 + S3)]

=
1
ω

[(1− ω)(I − Dβ) + (ω − r)(Sβ − S2)− ωS3

+ (1− ω)Sβ + (ω − r)S2 + ω(S1 + S3)]

=
1
ω

[(1− ω)(I − Dβ) + (1− r)Sβ + ωS1] ≥ 0.

Thus Nβ ≥ Fβ and Aβ + Nβ ≥ Aβ + Fβ. Furthermore we have

Mβ ≥ Eβ and A−1
β Mβ ≥ A−1

β Eβ ≥ 0.
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By Theorem 1.1 in [10], we have

ρ(E−1
β Fβ) ≤ ρ(M−1

β Nβ).

Hence
ρ(L̃rw) < ρ(Lrw) < 1.

(b) Let A be an irreducible matrix. By Lemma 3.1, Lrω is a nonneg-
ative and irreducible matrix, and by Lemma 2.5, there exists a positive
vector x such that

Lrωx = λx
where λ = ρ(Lrw). Thus we can easily show that

[(1− ω)I + (ω − r)L+ ωU ]x = λ(I − rL)x

or equivalently

[(1− ω − λ)I + (ω − r + rλ)L+ ωU ]x = 0

and
(λ− 1)(I − rL)x = ω(L+ U − I)x.

For the above λ and x we have

L̃rwx− λx =

= (Dβ − rLβ)−1[(1− ω)Dβ + (ω − r)Lβ + ωUβ − λ(Dβ − rLβ)]x

= (Dβ − rLβ)−1[(1− ω − λ)Dβ + (ω − r + rλ)Lβ + ωUβ]x

= (Dβ − rLβ)−1[(1− ω − λ)(I − S1) + (ω − r + rλ)(L − Sβ + S2)

+ ω(U + S3)]x

= (Dβ − rLβ)−1[(λ + ω − 1)S1 + (ω − r + rλ)(S2 − Sβ) + ωS3]x

= (Dβ − rLβ)−1[(λ− 1)S1 + ω(S1 + S2 − Sβ + S3) + (λr − r)

(S2 − Sβ)]x

= (Dβ − rLβ)−1[(λ− 1)S1 + ω(SβU + SβL − Sβ) + r(1− λ)

(Sβ − S2)]x

= (Dβ − rLβ)−1[(λ− 1)S1 + ωSβ(U + L − I) + r(1− λ)(Sβ − S2)]x

= (Dβ − rLβ)−1[(λ− 1)S1 + (λ− 1)(1− r)Sβ]x,

where S1 ≥ 0, Sβ ≥ 0 and 1− r ≥ 0. Therefore

L̃rwx− λx = (λ− 1)(Dβ − rLβ)−1[S1 + (1− r)Sβ]x.

If λ < 1, then L̃rwx − λx ≤ 0 and L̃rwx − λx 6= 0, i.e. L̃rwx ≤ λx
and L̃rwx 6= λx. If λ = 1, then L̃rwx − λx = 0, i.e. L̃rwx = λx. If
λ > 1 then L̃rwx − λx ≥ 0 and L̃rwx − λx 6= 0, i.e. L̃rwx ≥ λx and
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L̃rwx 6= λx. Using the above estimates and Lemma 2.6, we can easily
prove the conclusion of (b) and it completes the proof.

It is well known that by taking a special value ω = r in AOR method,
we obtain the SOR iteration. Hence we have the following result.

Corollary 3.3. Let A ∈ Rn×n be a nonsingular L-matrix. Assume
that 0 ≤ ω ≤ 1(ω 6= 0) and 0 < βi ≤ 1 but βi−1ai,i−1 6= 0 for some
i = 1, 2, · · · , n− 1.

(a) If ρ(Lω) < 1, then ρ(L̃ω) < ρ(Lω) < 1.
(b) If A is an irreducible matrix, and if there exists a non-empty set

α ⊂ Q = {2, 3, · · · , n} such that

0 < ai,i−1ai−1,i < 1, i ∈ α and ai,i−1ai−1,i = 0, i ∈ Q\α,

then 



ρ(L̃ω) < ρ(Lω) if ρ(Lω) < 1;
ρ(L̃ω) = ρ(Lω) if ρ(Lω) = 1;
ρ(L̃ω) > ρ(Lω) if ρ(Lω) > 1.

4. The preconditioned AOR method for H-matrices

In this section, we show the convergence of the preconditioned AOR
method for the system (1) when the coefficient matrix A is an H-matrix.
First, we give some lemmas which are useful in the sequel.

Lemma 4.1. [4] Let A be an H-matrix. Then |A−1| ≤ 〈A〉, where
〈A〉 denotes the comparison matrix given in Definition 2.

Lemma 4.2. [7] LetA and B be two n×n matrices with 0 ≤ |B| ≤ A.
Then ρ(B) ≤ ρ(A).

By above lemmas we state and prove some lemmas and theorems.

Lemma 4.3. If A is a nonsingular M -matrix, then ρ(Lrω) < 1.

Proof. Since A is an M -matrix, it is an L-matrix so that M = 1
ω (I −

rL) is a nonsingular M -matrix and N = 1
ω [(1−ω)I(ω− r)L+ ωU ] ≥ 0.

Hence A = M −N is an M -splitting, and by Lemma 2.7, ρ(M−1N) =
ρ(Lrω) < 1.

Lemma 4.4. If A is an H-matrix, then ρ(Lrω) < 1.
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Proof. Let A be an H-matrix, then 〈A〉 is an M -matrix. By Lemma
4.3, ρ(L̄rω) < 1 where

L̄rω = (I − r|L|)−1[(1− ω)I + (ω − r)|L|+ ω|U |].

Let
X = (I − rL)−1,
Y = (1− ω)I + (ω − r)L + ωU,
Z = (I − r|L|)−1,
T = (1− ω)I + (ω − r)|L|+ ω|U |.

Obviously, X is an H-matrix and 〈X〉 = Z. By Lemma 4.1, |X−1| ≤
Z−1. Hence, we have

|X−1Y | ≤ |X−1||Y | ≤ |X−1|T ≤ Z−1T

and |Lrω| ≤ L̄rω. From Lemma 4.2, we have ρ(Lrω) ≤ ρ(L̄rω) and this
completes the proof.

Lemma 4.5. Let A be an H-matrix. Then

β′i = 1 +
|ai,i−1|+ 1

|ai,i−1

(
2‖〈A〉−1‖∞ − 1

) > 1.

Proof. Since 〈A〉 = I − |L| − |U| ≤ I is a nonsingular M -matrix,
〈A〉−1 ≥ 0 and 0 ≤ I ≤ 〈A〉−1. Thus ‖〈A〉−1‖∞ ≥ 1 and then β′i > 1.

Theorem 4.6. Let A be an H-matrix. Then Aβ is an H-matrix and

ρ(L̃rω) < 1 for βi ∈ [0, β′i), i = 1, 2, · · · , n− 1.

Proof. Let r = 〈A〉−1e where e = (1, 1, · · · , 1)T . Since A is an H-
matrix, by Theorem 2.8, there exists a vector r > 0 such that 〈A〉r =
e > 0. We show that 〈Aβ〉 is an M -matrix. Note that

(〈Aβ〉r)1 = r1 −
n∑

j=2

|a1j |rj = (〈A〉r)1 > 0.
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For i = 2, · · · , n, we have

(〈Aβ〉r)i = |1− βi−1ai,i−1ai−1,i|ri −
∑

j 6=i

|aij − βi−1ai,i−1ai−1,j |rj

≥ ri − βi−1|ai,i−1ai−1,i|ri −
∑

j 6=i,i−1

|aij |rj

−
∑

j 6=i,i−1

βi−1|ai,i−1ai−1,j |rj − |ai,i−1||1− βi−1|ri−1

≥ (〈A〉r)i + |ai,i−1|ri−1 − βi−1|ai,i−1|[|ai−1,i|ri

+
∑

j 6=i,i−1

|ai−1j |rj ]− |ai,i−1||1− βi−1|ri−1

= 1 + |ai,i−1|ri−1 − βi−1|ai,i−1|[−(〈A〉r)i + ri−1]

− |ai,i−1||1− βi−1|ri−1

= 1 + |ai,i−1|ri−1 − βi−1|ai,i−1|[−1 + ri−1]− |ai,i−1||1− βi−1|ri−1

= 1 + βi−1|ai,i−1|+ [1− βi−1 − |1− βi−1|]|ai,i−1|ri−1.

If 0 ≤ βi ≤ 1, then

(〈Aβ〉r)i = 1 + βi−1|ai,i−1| > 0.

Therefore, 〈Aβ〉 is an M -matrix and Aβ is an H-matrix.
If βi > 1, then

(〈Aβ〉r)i = 1 + 2|ai,i−1|ri−1 − (2ri−1 − 1)βi|ai,i−1|

> 1 + 2|ai,i−1|ri−1 − (2ri−1 − 1)[1 +
|ai,i−1|+ 1

|ai,i−1|(2‖〈A〉−1‖∞ − 1)
]

|ai,i−1|

≥ 1 + |ai,i−1| − (2‖〈A〉−1‖∞ − 1)|ai,i−1| |ai,i−1|+ 1
|ai,i−1|(2‖〈A〉−1‖∞ − 1)

= 0.

Therefore, 〈Aβ〉 is an M -matrix and Aβ is an H-matrix, and by Lemma
4.4, ρ(L̃rω) < 1.

For the SOR iterative method, the following corollary holds.

Corollary 4.7. Let A be an H-matrix. Then Aβ is an H-matrix

and ρ(L̃ω) < 1 for βi ∈ [0, β′i), i = 1, 2, · · · , n− 1.
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5. Numerical experiments

In this section, we give some numerical examples to show efficiency
of the preconditioned AOR method.

Example 1. Suppose that the coefficient matrix A is as follows:

A =




1 −0.1 −0.06 −0.35 −0.22
−0.16 1 −0.04 −0.08 −0.28
−0.2 −0.1 1 −0.12 −0.2
−0.06 −0.24 −0.17 1 −0.05
−0.32 −0.22 −0.1 −0.15 1




.

The coefficient matrix A is an L-matrix. Let β1 = 0.86, β2 = 0.79,
β3 = 0.95 and β4 = 0.92. For r = 0.3093, ω = 0.9827, we have ρ(L̃rω) =
0.5760 < ρ(Lrω) = 0.6107, and for r = ω = 0.66 we get ρ(L̃ω) =
0.6735 < ρ(Lω) = 0.6916.
The matrix A is also an H-matrix. Let β1 = 3, β2 = 2.6, β3 = 4 and
β4 = 2. For r = 0.3093 and ω = 0.9827 we get ρ(L̃rω) = 0.4892 <

ρ(Lrω) = 0.6107 and for r = ω = 0.85 we get ρ(L̃ω) = 0.5009 < ρ(Lω) =
0.5536.
Example 2. Suppose that the coefficient matrix A is given by

A =




1 − 1
2×10+1 − 1

3×10+1 · · · − 1
n×10+1

− 1
2×10+2 1 − 1

3×10+2 · · · − 1
n×10+2

− 1
3×10+3 − 1

2×10+3 1 · · · − 1
n×10+3

...
...

...
. . .

...
− 1

n×10+n − 1
(n−1)×10+n − 1

(n−2)×10+n · · · 1




We take βi = 0.98 for all i = 1, 2, · · · , n− 1. Table 1 shows the spectral
radii, ρ(Lrω) and ρ(L̃rω), of AOR method and the preconditioned AOR
method, respectively, for different values of n and various r and ω. As
this table shows, we have ρ(Lrω) < ρ(L̃rω) for each case.
Example 3. Suppose that the coefficient matrix A is as

A =




1 0.2 −0.2 0.2 0.1

0.4 1 0.2 −0.2 0.1

−0.5 0.2 1 0.1 −0.1

0.3 −0.6 0.3 1 0.1

0.8 0.3 −0.2 0.4 1




.
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Table 1. Numerical results for Example 2.

n r ω ρ(Lrω) ρ(L̃rω)

50 0.45 0.78 0.3902 0.3799

100 0.38 0.96 0.2903 0.2784

150 0.37 0.96 0.3076 0.2971

200 0.28 0.95 0.3399 0.3294

The coefficient matrix A is an H-matrix. Let β1 = 0.99, β2 = 0.8,
β3 = 0.56 and β4 = 0.87. For r = 0.35, ω = 0.98, we have ρ(L̃rω) =
0.7533 < ρ(Lrω) = 0.7936, and for r = ω = 0.88 we get ρ(L̃ω) =
0.7043 < ρ(Lω) = 0.7323.
Let β1 = 2.5, β2 = 2.01, β3 = 2.92 and β4 = 2.21. For r = 0.58, ω = 0.95,
we have ρ(L̃rω) = 0.6346 < ρ(Lrω) = 0.7706, and for r = ω = 0.89 we
get ρ(L̃ω) = 0.6440 < ρ(Lω) = 0.7267.
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