# CONVERGENCE ANALYSIS OF PRECONDITIONED AOR ITERATIVE METHOD 

P. $\operatorname{Hessari}^{a}$, M. T. Darvishi ${ }^{b}$, B.-C. Shin $^{a, 1}$


#### Abstract

In this paper, we consider a preconditioned accelerated overrelaxation (PAOR) method to solve systems of linear equations. We show the convergence of the PAOR method. We also give comparison results when the coefficient matrix is an $L$ - or $H$-matrix. Finally, we provide some numerical experiments to show efficiency of PAOR method.


## 1. Introduction

Consider the following linear system of $n$ equations

$$
\begin{equation*}
\mathcal{A} \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

where $\mathcal{A}=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is an $n \times n$ nonsingular matrix, and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^{n}$. If $\mathcal{A}$ is splitted into

$$
\mathcal{A}=M-N,
$$

where $M$ is a nonsingular matrix, then the basic splitting iterative method can be expressed as:

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=M^{-1} N \mathbf{x}^{(k)}+M^{-1} \mathbf{b}, \quad k=0,1,2, \cdots . \tag{2}
\end{equation*}
$$

As it is well known, the above iterative method is convergent to the unique solution $x=\mathcal{A}^{-1} \mathbf{b}$ for each initial value $x^{(0)}$ if and only if the spectral radius of the iteration matrix $M^{-1} N$ satisfies $\rho\left(M^{-1} N\right)<1$. To improve the convergence rate of the basic iterative method, several preconditioned iterative methods have been proposed (see, e.g., $[1,2,3]$ ).

[^0]The main idea of these preconditioned iterative methods is to transform the original system into the preconditioned form

$$
\begin{equation*}
P \mathcal{A} \mathbf{x}=P \mathbf{b} \tag{3}
\end{equation*}
$$

where $P \in \mathbb{R}^{n \times n}$ is a nonsingular matrix. Then the basic iterative scheme of the preconditioned system is given by

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=M_{P}^{-1} N_{P} \mathbf{x}^{(k)}+M_{P}^{-1} \mathbf{b}, \quad k=0,1,2, \cdots, \tag{4}
\end{equation*}
$$

where $P \mathcal{A}=M_{P}-N_{P}$ with a nonsingular matrix $M_{P}$.
Without loss of generality, suppose that the coefficient matrix $\mathcal{A}$ has the following splitting

$$
\mathcal{A}=\mathcal{I}-\mathcal{L}-\mathcal{U}
$$

where $\mathcal{I}$ is identity matrix, $-\mathcal{L}$ and $-\mathcal{U}$ are strictly lower and upper triangular matrix of $\mathcal{A}$, respectively. For this splitting, the AOR iterative method is as follows:

$$
\begin{equation*}
x^{(i+1)}=L_{r w} x^{(i)}+\omega(\mathcal{I}-r \mathcal{L})^{-1} \mathbf{b}, \quad i=0,1,2, \cdots, \tag{5}
\end{equation*}
$$

where

$$
L_{r w}=(\mathcal{I}-r \mathcal{L})^{-1}[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}]
$$

is the iteration matrix and $r, \omega$ are acceleration parameters with $\omega \neq 0$.
Liu et al. [1] considered $P=I+S_{\beta}$ as a preconditioner and gave the sufficient conditions for convergence of the Gauss-Seidel method when the coefficient matrix $\mathcal{A}$ is an $H$-matrix, where

$$
S_{\beta}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \\
-\beta_{1} a_{21} & 0 & \cdots & 0 & 0 \\
0 & -\beta_{2} a_{32} & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & -\beta_{n-1} a_{n, n-1} & 0
\end{array}\right)
$$

whereas $\beta_{i} \geq 0, i=1, \cdots, n-1$.
Consider the preconditioned linear system

$$
\begin{equation*}
\mathcal{A}_{\beta} \mathbf{x}=\mathbf{b}_{\beta} \tag{6}
\end{equation*}
$$

where $\mathcal{A}_{\beta}=\left(I+S_{\beta}\right) A$ and $\mathbf{b}_{\beta}=\left(I+S_{\beta}\right) \mathbf{b}$.
In this paper, we will show the convergence analysis for the preconditioned AOR method when the coefficient matrix $\mathcal{A}$ is an $L$ - or an $H$-matrix.

## 2. Preliminaries

For convenience, some notations, definitions and some results that will be used in the next sections are given.

A matrix $A$ is called nonnegative(positive) if each entry of $A$ is nonnegative(positive). We denote it by $A \geq 0(>0)$. Similarly, for $n$-dimensional vectors $x$, by identifying them with $n \times 1$ matrices, we can also define $\mathbf{x} \geq 0(>0)$. Denote by $\rho(A)$ the spectral radius of $A$.

Definition 2.1. [6] $A$ real matrix $A$ is called an $M$-matrix if $A=$ $s I-B, B \geq 0$ and $s>\rho(B)$.

Definition 2.2. [7, 9] A matrix $A=\left(a_{i j}\right)$ is called

1. a $Z$-matrix if $a_{i j} \leq 0$ for $i, j=1,2, \cdots, n$ such that $i \neq j$,
2. an $L$-matrix if $a_{i j} \leq 0$ for $i, j=1,2, \cdots, n,(i \neq j)$ and $a_{i i}>0$, $i=1,2, \cdots, n$,
3. an $H$-matrix if its comparison matrix $\langle A\rangle=\left(\bar{a}_{i j}\right)$ is a nonsingular M-matrix, where $\bar{a}_{i j}$ is

$$
\bar{a}_{i i}=\left|a_{i, i}\right|, \quad \bar{a}_{i j}=-\left|a_{i j}\right|, \quad i \neq j
$$

It must be noted that an $L$-matrix $A$ is a nonsingular $M$-matrix if $A$ is nonsingular and $A^{-1} \geq 0$.

Definition 2.3. [7] $A$ matrix $A$ is irreducible if the directed graph associated to $A$ is strongly connected.

Definition 2.4. Let $A$ be a real matrix. The representation

$$
A=M-N
$$

is called a splitting of $A$ if $M$ is a nonsingular matrix. The splitting is said to be

1. convergent if $\rho\left(M^{-1} N\right)<1$;
2. regular if $M^{-1} \geq 0$ and $N \geq 0$;
3. nonnegative if $M^{-1} N \geq 0$;
4. $M$-splitting if $M$ is a nonsingular $M$-matrix and $N \geq 0$.

It is obvious that an $M$-splitting is regular and a regular splitting is nonnegative.

Lemma 2.5. [7] Let $A \geq 0$ be an irreducible $n \times n$ matrix. Then

1. $A$ has a positive real eigenvalue equal to its spectral radius $\rho(A)$,
2. for $\rho(A)$ there corresponds an eigenvector $x>0$,
3. $\rho(A)$ is a simple eigenvalue of $A$,
4. $\rho(A)$ increases when any entry of $A$ increases.

Lemma 2.6. [6] Let $A$ be a nonnegative matrix.

1. If $\alpha x \leq A x$ for some nonnegative vector $x, x \neq 0$, then $\alpha \leq \rho(A)$.
2. If $A x \leq \beta x$ for some positive vector $x$, then $\rho(A) \leq \beta$.

Moreover, if $A$ is irreducible and if $0 \neq \alpha x \leq A x \leq \beta x$ for some nonnegative vector $x$, then $\alpha \leq \rho(A) \leq \beta$ and $x$ is a positive vector.

Lemma 2.7. [8] Let $A=M-N$ be an $M$-splitting of $A$. Then $\rho\left(M^{-1} N\right)<1$ if and only if $A$ is a nonsingular $M$-matrix.

Theorem 2.8. [6] Let $A$ be a $Z$-matrix. Then the following statements are equivalent:

1. $A$ is nonsingular $M$-matrix.
2. There is a positive vector $x$ such that $A x>0$.
3. All principal submatrices of $A$ are $M$-matrices.

Lemma 2.9. Let $\mathcal{A}$ be a $Z$-matrix. Then $\mathcal{A}$ is a nonsingular $M$ matrix if and only if $\mathcal{A}_{\beta}$ is a nonsingular $M$-matrix for $\beta_{i} \in[0,1], i=$ $1,2, \cdots, n-1$.

Proof. Let $\mathcal{A}$ be a nonsingular $M$-matrix. We have

$$
\begin{array}{cc}
\mathcal{A}_{\beta}=\left(I+S_{\beta}\right) \mathcal{A}= \\
\left(\begin{array}{cccc}
a_{12} & \cdots & a_{1 n} \\
1 & 1-\beta_{1} a_{21} a_{12} & \cdots & a_{2 n}- \\
a_{21}-\beta_{1} a_{21} & \vdots & & \beta_{1} a_{21} a_{1 n} \\
\vdots & a_{n 2}-\beta_{n-1} a_{n, n-1} a_{n-1,2} & \cdots & 1- \\
a_{n 1}-\beta_{n-1} a_{n, n-1} a_{n-1,1} & \ddots & \vdots \\
& & & \beta_{n-1} a_{n, n-1} \\
& & & a_{n-1, n}
\end{array}\right)
\end{array}
$$

Suppose that $\mathcal{A}$ is a nonsingular $M$-matrix, then by Theorem 2.8, there exists a positive vector $x$ such that $\mathcal{A} \mathbf{x}>0$. On the other hand, since $\mathcal{A}$ is a $Z$-matrix, $S_{\beta}>0$. So for the above vector $x$, we have $\mathcal{A}_{\beta} \mathbf{x}=\left(I+S_{\beta}\right) \mathcal{A} \mathbf{x}>0$. Hence, by Theorem $2.8, \mathcal{A}_{\beta}$ is a nonsingular $M-$ matrix. Note that if $\mathcal{A}_{\beta}$ be an $M$-matrix, then $\mathcal{A}_{\beta}^{T}$ is also an $M$-matrix. By Theorem 2.8, there exists a positive vector $\mathbf{x}$ such that $\mathcal{A}_{\beta}^{T} \mathbf{x}>0$, so $\mathcal{A}^{T}\left(I+S_{\beta}^{T}\right) \mathbf{x}>0$. Set $\mathbf{y}=\left(I+S_{\beta}^{T}\right) \mathbf{x}$. Then, we have $\mathbf{y}>0$ and
$\mathcal{A}^{T} \mathbf{y}>0$, which means that $\mathcal{A}^{T}$ is a nonsingular $M$-matrix, hence, $\mathcal{A}$ is also a nonsingular $M$-matrix.

## 3. The preconditioned AOR method for $L$-matrices

In this section, we consider the preconditioned linear system

$$
\mathcal{A}_{\beta} \mathbf{x}=\mathbf{b}_{\beta}
$$

where $\mathcal{A}_{\beta}=\left(I+S_{\beta}\right) \mathcal{A}$ and $\mathbf{b}_{\beta}=\left(I+S_{\beta}\right) \mathbf{b}$. We split the coefficient matrix $\mathcal{A}_{\beta}$ as

$$
\mathcal{A}_{\beta}=\mathcal{D}_{\beta}-\mathcal{L}_{\beta}-\mathcal{U}_{\beta}
$$

where $\mathcal{D}_{\beta},-\mathcal{L}_{\beta}$, and $-\mathcal{U}_{\beta}$ are the diagonal, strictly lower and strictly upper triangular matrices of $\mathcal{A}_{\beta}$, respectively. Then the preconditioned AOR iterative method is as follows:

$$
\begin{equation*}
\mathbf{x}^{(i+1)}=\tilde{L}_{r w} \mathbf{x}^{(i)}+\omega\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1} \mathbf{b}_{\beta}, \quad i=0,1,2, \cdots \tag{7}
\end{equation*}
$$

where

$$
\tilde{L}_{r w}=\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega) \mathcal{D}_{\beta}+(\omega-r) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}\right]
$$

is the iteration matrix.
Lemma 3.1. Let $\mathcal{A}$ and $\mathcal{A}_{\beta}$ be the coefficient matrices of linear system (1) and (6), respectively. Suppose that $\mathcal{A}$ is irreducible L-matrix and $0 \leq r \leq \omega \leq 1(r \neq 1, \omega \neq 0)$.

1. The iterative matrix $L_{r \omega}$ in (5) is a nonnegative irreducible matrix.
2. If there exists a nonempty set $\alpha \subset Q=\{2,3, \cdots, n\}$ such that
$0<a_{i, i-1} a_{i-1, i}<1, \quad i \in \alpha \quad$ and $\quad a_{i, i-1} a_{i-1, i}=0, \quad i \in Q \backslash \alpha$, then $\tilde{L}_{r w}$ in (7) is a nonnegative irreducible matrix.

Proof. (a) Note that

$$
\begin{aligned}
L_{r w}= & (\mathcal{I}-r \mathcal{L})^{-1}[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \\
= & \left(\mathcal{I}+r \mathcal{L}+r^{2} \mathcal{L}^{2}+\cdots+r^{n-1} \mathcal{L}^{n-1}\right)[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \\
= & (1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}+r \mathcal{L}[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \\
& \quad+\left[r^{2} \mathcal{L}^{2}+\cdots+r^{n-1} \mathcal{L}^{n-1}\right][(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \\
= & (1-\omega) \mathcal{I}+\omega(1-r) \mathcal{L}+\omega \mathcal{U}+T
\end{aligned}
$$

where
$T=r \mathcal{L}[(\omega-r) \mathcal{L}+\omega \mathcal{U}]+\left[r^{2} \mathcal{L}^{2}+\cdots+r^{n-1} \mathcal{L}^{n-1}\right][(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \geq 0$.
Since $\mathcal{A}$ is an $L$-matrix, it holds that $\mathcal{I} \geq 0, \mathcal{L} \geq 0$ and $\mathcal{U} \geq 0$, using the fact that $0 \leq r \leq \omega \leq 1(r \neq 1, \omega \neq 0)$, we have $L_{r \omega} \geq 0$. Since $\mathcal{A}$ is
an irreducible matrix, so is $(1-\omega) \mathcal{I}+\omega(1-r) \mathcal{L}+\omega \mathcal{U}$. Thus $L_{r w}$ is an irreducible matrix.
(b) Note that

$$
\begin{aligned}
\tilde{L}_{r w} & =\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega) \mathcal{D}_{\beta}+(\omega-r) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}\right] \\
& =\left(\mathcal{I}-r \mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}+\omega \mathcal{D}_{\beta}^{-1} \mathcal{U}_{\beta}\right] \\
& =(1-\omega) \mathcal{I}+\omega(1-r) \mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}+\omega \mathcal{D}_{\beta}^{-1} \mathcal{U}_{\beta}+T_{\beta}
\end{aligned}
$$

where

$$
\begin{aligned}
T_{\beta}= & r \mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}\left[(\omega-r) \mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}+\omega \mathcal{D}_{\beta}^{-1} \mathcal{U}_{\beta}\right] \\
& +\left[r^{2}\left(\mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}\right)^{2}+\cdots+r^{n-1}\left(\mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}\right)^{n-1}\right] \times \\
& {\left[(1-\omega) \mathcal{D}_{\beta}^{-1}+(\omega-r)\left(\mathcal{D}_{\beta}^{-1} \mathcal{L}_{\beta}\right)+\omega\left(\mathcal{D}_{\beta}^{-1} \mathcal{U}_{\beta}\right)\right] \geq 0 }
\end{aligned}
$$

By similar arguments given in proof of (a), we can easily show that $\tilde{L}_{r w} \geq 0$. Since $0<\beta_{i} \leq 1$, it is obvious that $\mathcal{A}_{\beta}$ is an irreducible matrix. Thus $\tilde{L}_{r w}$ is a nonnegative irreducible matrix.

Theorem 3.2. Let $\mathcal{A} \in \mathbb{R}^{n \times n}$ be a nonsingular L-matrix. Assume that $0 \leq r \leq \omega \leq 1(r \neq 1, \omega \neq 0)$, and $0<\beta_{i} \leq 1$ but $\beta_{i-1} a_{i, i-1} \neq 0$ for some $i=1,2, \cdots, n-1$.
(a) If $\rho\left(L_{r \omega}\right)<1$, then $\rho\left(\tilde{L}_{r \omega}\right)<\rho\left(L_{r \omega}\right)<1$.
(b) If $\mathcal{A}$ is an irreducible matrix and if there exists a non-empty set $\alpha \subset Q=\{2,3, \cdots\}$ such that

$$
0<a_{i, i-1} a_{i-1, i}<1, \quad i \in \alpha, \quad \text { and } \quad a_{i, i-1} a_{i-1, i}=0, \quad i \in Q \backslash \alpha
$$

then it holds that

$$
\left\{\begin{array}{lll}
\rho\left(\tilde{L}_{r \omega}\right)<\rho\left(L_{r \omega}\right) & \text { if } & \rho\left(L_{r \omega}\right)<1 \\
\rho\left(\tilde{L}_{r \omega}\right)=\rho\left(L_{r \omega}\right) & \text { if } & \rho\left(L_{r \omega}\right)=1 \\
\rho\left(\tilde{L}_{r \omega}\right)>\rho\left(L_{r \omega}\right) & \text { if } & \rho\left(L_{r \omega}\right)>1
\end{array}\right.
$$

Proof. Let

$$
\begin{aligned}
& M=\frac{1}{\omega}(\mathcal{I}-r \mathcal{L}) \\
& N=\frac{1}{\omega}[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}) \\
& E_{\beta}=\frac{1}{\omega}\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right) \\
& F_{\beta}=\frac{1}{\omega}\left[(1-\omega) \mathcal{D}_{\beta}+(\omega-r) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}\right) \\
& M_{\beta}=\frac{1}{\omega}\left(\mathcal{I}+S_{\beta}\right)(\mathcal{I}-r \mathcal{L}) \\
& N_{\beta}=\frac{1}{\omega}\left(\mathcal{I}+S_{\beta}\right)[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}) .
\end{aligned}
$$

Then we have the following splitting

$$
\mathcal{A}=M-N \quad \text { and } \quad \mathcal{A}_{\beta}=E_{\beta}-F_{\beta}=M_{\beta}-N_{\beta}
$$

(a) Since $\mathcal{A}$ is an $L$-matrix and $0 \leq r \leq \omega \leq 1(r \neq 1, \omega \neq 0), M=$ $\frac{1}{\omega}(\mathcal{I}-r \mathcal{L})$ is a nonsingular $M$-matrix and $N \geq 0$ so that $\mathcal{A}=M-N$ is an $M$-splitting. By the fact that $\rho\left(L_{r w}\right)<1$ and Lemma 2.7, $\mathcal{A}$ is a nonsingular $M$-matrix. We also show that $\mathcal{A}_{\beta}$ is a nonsingular $M$ matrix using Lemma 2.9.
Since $\mathcal{A}_{\beta}$ is a nonsingular $M$-matrix, $\left(\mathcal{D}_{\beta}\right)_{i, i}>0$ and $D_{\beta}$ is invertible. Using the fact that $\left(\mathcal{L}_{\beta}\right)_{i j}=-a_{i j}+\beta_{i-1} a_{i, i-1} a_{i-1 j} \geq 0$, for $i=3, \cdots, n$, $j<i-2$, and $\left(\mathcal{L}_{\beta}\right)_{i, i-1}=-a_{i, i-1}\left(1-\beta_{i-1}\right) \geq 0, i=2, \cdots, n$, we have $\mathcal{L}_{\beta} \geq 0$ so that $E_{\beta}=\frac{1}{\omega}\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)$ is a $Z$-matrix and it is also a nonsingular $M$-matrix. By our assumptions, $F_{\beta}$ is a nonnegative matrix so that $A_{\beta}=E_{\beta}-F_{\beta}$ is an $M$-splitting. Thus by Lemma 2.7 , we have

$$
\rho\left(\tilde{L}_{r w}\right)=\rho\left(E_{\beta}^{-1} F_{\beta}\right)<1
$$

Using the fact that $\mathcal{A}=M-N, \mathcal{A}_{\beta}=E_{\beta}-F_{\beta}$ are $M$-splitting and $M^{-1} N=M_{\beta}^{-1} N_{\beta}$ yields that two splittings are regular and nonnegative.

On the other hand, $\mathcal{A}_{\beta}$ can be represented as

$$
\mathcal{A}_{\beta}=\left(\mathcal{I}+S_{\beta}\right) \mathcal{A}=\mathcal{I}-\mathcal{L}-\mathcal{U}+S_{\beta}-S_{\beta} \mathcal{L}-S_{\beta} \mathcal{U}
$$

Denote by $S_{2}=S_{\beta} \mathcal{L}$. Then $S_{2}$ is a strictly lower triangular matrix. Let $S_{\beta} \mathcal{U}=S_{1}+S_{3}$ where $S_{1}$ and $S_{3}$ are diagonal and strictly upper triangular matrix of $S_{\beta} \mathcal{U}$, respectively. Then $\mathcal{D}_{\beta}=\mathcal{I}-S_{1}, \mathcal{L}_{\beta}=\mathcal{L}-S_{\beta}+S_{2}$, $\mathcal{U}_{\beta}=\mathcal{U}+S_{3}$, and

$$
\mathcal{A}_{\beta}=\mathcal{I}-\mathcal{L}-\mathcal{U}+S_{\beta}-S_{1}-S_{2}-S_{3}=\mathcal{D}_{\beta}-\mathcal{L}_{\beta}-\mathcal{U}_{\beta}
$$

Note that

$$
\begin{aligned}
& N_{\beta}-F_{\beta}== \frac{1}{\omega}\left(\mathcal{I}+S_{\beta}\right)[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \\
& \quad-\frac{1}{\omega}\left[(1-\omega) \mathcal{D}_{\beta}+(\omega-r) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}\right] \\
&= \frac{1}{\omega}\left[(1-\omega)\left(\mathcal{I}-\mathcal{D}_{\beta}\right)+(\omega-r)\left(\mathcal{L}-\mathcal{L}_{\beta}\right)+\omega\left(\mathcal{U}-\mathcal{U}_{\beta}\right)\right. \\
&\left.\quad+(1-\omega) S_{\beta}+(\omega-r) S_{2}+\omega\left(S_{1}+S_{3}\right)\right] \\
&=\frac{1}{\omega}\left[(1-\omega)\left(\mathcal{I}-\mathcal{D}_{\beta}\right)+(\omega-r)\left(S_{\beta}-S_{2}\right)-\omega S_{3}\right. \\
&\left.\quad+(1-\omega) S_{\beta}+(\omega-r) S_{2}+\omega\left(S_{1}+S_{3}\right)\right] \\
&= \frac{1}{\omega}\left[(1-\omega)\left(\mathcal{I}-\mathcal{D}_{\beta}\right)+(1-r) S_{\beta}+\omega S_{1}\right] \geq 0
\end{aligned}
$$

Thus $N_{\beta} \geq F_{\beta}$ and $\mathcal{A}_{\beta}+N_{\beta} \geq \mathcal{A}_{\beta}+F_{\beta}$. Furthermore we have

$$
M_{\beta} \geq E_{\beta} \quad \text { and } \quad \mathcal{A}_{\beta}^{-1} M_{\beta} \geq \mathcal{A}_{\beta}^{-1} E_{\beta} \geq 0
$$

By Theorem 1.1 in [10], we have

$$
\rho\left(E_{\beta}^{-1} F_{\beta}\right) \leq \rho\left(M_{\beta}^{-1} N_{\beta}\right) .
$$

Hence

$$
\rho\left(\tilde{L}_{r w}\right)<\rho\left(L_{r w}\right)<1 .
$$

(b) Let $\mathcal{A}$ be an irreducible matrix. By Lemma 3.1, $L_{r \omega}$ is a nonnegative and irreducible matrix, and by Lemma 2.5, there exists a positive vector $x$ such that

$$
L_{r \omega} \mathbf{x}=\lambda \mathbf{x}
$$

where $\lambda=\rho\left(L_{r w}\right)$. Thus we can easily show that

$$
[(1-\omega) \mathcal{I}+(\omega-r) \mathcal{L}+\omega \mathcal{U}] \mathbf{x}=\lambda(\mathcal{I}-r \mathcal{L}) \mathbf{x}
$$

or equivalently

$$
[(1-\omega-\lambda) \mathcal{I}+(\omega-r+r \lambda) \mathcal{L}+\omega \mathcal{U}] \mathbf{x}=0
$$

and

$$
(\lambda-1)(\mathcal{I}-r \mathcal{L}) \mathbf{x}=\omega(\mathcal{L}+\mathcal{U}-\mathcal{I}) \mathbf{x} .
$$

For the above $\lambda$ and $\mathbf{x}$ we have

$$
\begin{aligned}
\tilde{L}_{r w} \mathbf{x}- & \lambda \mathbf{x}= \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega) \mathcal{D}_{\beta}+(\omega-r) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}-\lambda\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega-\lambda) \mathcal{D}_{\beta}+(\omega-r+r \lambda) \mathcal{L}_{\beta}+\omega \mathcal{U}_{\beta}\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(1-\omega-\lambda)\left(\mathcal{I}-S_{1}\right)+(\omega-r+r \lambda)\left(\mathcal{L}-S_{\beta}+S_{2}\right)\right. \\
+ & \left.\omega\left(\mathcal{U}+S_{3}\right)\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(\lambda+\omega-1) S_{1}+(\omega-r+r \lambda)\left(S_{2}-S_{\beta}\right)+\omega S_{3}\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(\lambda-1) S_{1}+\omega\left(S_{1}+S_{2}-S_{\beta}+S_{3}\right)+(\lambda r-r)\right. \\
& \left.\left(S_{2}-S_{\beta}\right)\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(\lambda-1) S_{1}+\omega\left(S_{\beta} \mathcal{U}+S_{\beta} \mathcal{L}-S_{\beta}\right)+r(1-\lambda)\right. \\
& \left.\left(S_{\beta}-S_{2}\right)\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(\lambda-1) S_{1}+\omega S_{\beta}(\mathcal{U}+\mathcal{L}-\mathcal{I})+r(1-\lambda)\left(S_{\beta}-S_{2}\right)\right] \mathbf{x} \\
= & \left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[(\lambda-1) S_{1}+(\lambda-1)(1-r) S_{\beta}\right] \mathbf{x},
\end{aligned}
$$

where $S_{1} \geq 0, S_{\beta} \geq 0$ and $1-r \geq 0$. Therefore

$$
\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x}=(\lambda-1)\left(\mathcal{D}_{\beta}-r \mathcal{L}_{\beta}\right)^{-1}\left[S_{1}+(1-r) S_{\beta}\right] \mathbf{x} .
$$

If $\lambda<1$, then $\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x} \leq 0$ and $\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x} \neq 0$, i.e. $\tilde{L}_{r w} \mathbf{x} \leq \lambda \mathbf{x}$ and $\tilde{L}_{r w} \mathbf{x} \neq \lambda \mathbf{x}$. If $\lambda=1$, then $\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x}=0$, i.e. $\tilde{L}_{r w} \mathbf{x}=\lambda \mathbf{x}$. If $\lambda>1$ then $\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x} \geq 0$ and $\tilde{L}_{r w} \mathbf{x}-\lambda \mathbf{x} \neq 0$, i.e. $\tilde{L}_{r w} \mathbf{x} \geq \lambda \mathbf{x}$ and
$\tilde{L}_{r w} \mathbf{x} \neq \lambda \mathbf{x}$. Using the above estimates and Lemma 2.6, we can easily prove the conclusion of (b) and it completes the proof.

It is well known that by taking a special value $\omega=r$ in AOR method, we obtain the SOR iteration. Hence we have the following result.

Corollary 3.3. Let $\mathcal{A} \in \mathbb{R}^{n \times n}$ be a nonsingular L-matrix. Assume that $0 \leq \omega \leq 1(\omega \neq 0)$ and $0<\beta_{i} \leq 1$ but $\beta_{i-1} a_{i, i-1} \neq 0$ for some $i=1,2, \cdots, n-1$.
(a) If $\rho\left(L_{\omega}\right)<1$, then $\rho\left(\tilde{L}_{\omega}\right)<\rho\left(L_{\omega}\right)<1$.
(b) If $\mathcal{A}$ is an irreducible matrix, and if there exists a non-empty set $\alpha \subset Q=\{2,3, \cdots, n\}$ such that
$0<a_{i, i-1} a_{i-1, i}<1, \quad i \in \alpha \quad$ and $\quad a_{i, i-1} a_{i-1, i}=0, \quad i \in Q \backslash \alpha$,
then

$$
\left\{\begin{array}{lll}
\rho\left(\tilde{L}_{\omega}\right)<\rho\left(L_{\omega}\right) & \text { if } & \rho\left(L_{\omega}\right)<1 ; \\
\rho\left(\tilde{L}_{\omega}\right)=\rho\left(L_{\omega}\right) & \text { if } & \rho\left(L_{\omega}\right)=1 ; \\
\rho\left(\tilde{L}_{\omega}\right)>\rho\left(L_{\omega}\right) & \text { if } & \rho\left(L_{\omega}\right)>1
\end{array}\right.
$$

## 4. The preconditioned AOR method for $H$-matrices

In this section, we show the convergence of the preconditioned AOR method for the system (1) when the coefficient matrix $\mathcal{A}$ is an $H$-matrix. First, we give some lemmas which are useful in the sequel.

Lemma 4.1. [4] Let $\mathcal{A}$ be an $H$-matrix. Then $\left|\mathcal{A}^{-1}\right| \leq\langle\mathcal{A}\rangle$, where $\langle\mathcal{A}\rangle$ denotes the comparison matrix given in Definition 2.

Lemma 4.2. [7] Let $\mathcal{A}$ and $\mathbf{B}$ be two $n \times n$ matrices with $0 \leq|\mathbf{B}| \leq \mathcal{A}$. Then $\rho(\mathbf{B}) \leq \rho(\mathcal{A})$.

By above lemmas we state and prove some lemmas and theorems.
Lemma 4.3. If $\mathcal{A}$ is a nonsingular $M$-matrix, then $\rho\left(L_{r \omega}\right)<1$.
Proof. Since $\mathcal{A}$ is an $M$-matrix, it is an $L$-matrix so that $M=\frac{1}{\omega}(\mathcal{I}-$ $r \mathcal{L})$ is a nonsingular $M$-matrix and $N=\frac{1}{\omega}[(1-\omega) \mathcal{I}(\omega-r) \mathcal{L}+\omega \mathcal{U}] \geq 0$. Hence $\mathcal{A}=M-N$ is an $M$-splitting, and by Lemma 2.7, $\rho\left(M^{-1} N\right)=$ $\rho\left(L_{r \omega}\right)<1$.

Lemma 4.4. If $\mathcal{A}$ is an $H$-matrix, then $\rho\left(L_{r \omega}\right)<1$.

Proof. Let $\mathcal{A}$ be an $H$-matrix, then $\langle\mathcal{A}\rangle$ is an $M$-matrix. By Lemma 4.3, $\rho\left(\bar{L}_{r \omega}\right)<1$ where

$$
\bar{L}_{r \omega}=(I-r|L|)^{-1}[(1-\omega) I+(\omega-r)|L|+\omega|U|] .
$$

Let

$$
\begin{aligned}
& X=(I-r L)^{-1}, \\
& Y=(1-\omega) I+(\omega-r) L+\omega U, \\
& Z=(I-r|L|)^{-1}, \\
& T=(1-\omega) I+(\omega-r)|L|+\omega|U| .
\end{aligned}
$$

Obviously, $X$ is an $H$-matrix and $\langle X\rangle=Z$. By Lemma 4.1, $\left|X^{-1}\right| \leq$ $Z^{-1}$. Hence, we have

$$
\left|X^{-1} Y\right| \leq\left|X^{-1}\right||Y| \leq\left|X^{-1}\right| T \leq Z^{-1} T
$$

and $\left|L_{r \omega}\right| \leq \bar{L}_{r \omega}$. From Lemma 4.2, we have $\rho\left(L_{r \omega}\right) \leq \rho\left(\bar{L}_{r \omega}\right)$ and this completes the proof.

Lemma 4.5. Let $\mathcal{A}$ be an $H$-matrix. Then

$$
\beta_{i}^{\prime}=1+\frac{\left|a_{i, i-1}\right|+1}{\mid a_{i, i-1}\left(2\left\|\langle\mathcal{A}\rangle^{-1}\right\|_{\infty}-1\right)}>1 .
$$

Proof. Since $\langle\mathcal{A}\rangle=\mathcal{I}-|\mathcal{L}|-|\mathcal{U}| \leq \mathcal{I}$ is a nonsingular $M$-matrix, $\langle\mathcal{A}\rangle^{-1} \geq 0$ and $0 \leq \mathcal{I} \leq\langle\mathcal{A}\rangle^{-1}$. Thus $\left\|\langle\mathcal{A}\rangle^{-1}\right\|_{\infty} \geq 1$ and then $\beta_{i}^{\prime}>1$.

Theorem 4.6. Let $\mathcal{A}$ be an $H$-matrix. Then $\mathcal{A}_{\beta}$ is an $H$-matrix and $\rho\left(\tilde{L}_{r \omega}\right)<1$ for $\beta_{i} \in\left[0, \beta_{i}^{\prime}\right), i=1,2, \cdots, n-1$.

Proof. Let $r=\langle\mathcal{A}\rangle^{-1} \mathbf{e}$ where $\mathbf{e}=(1,1, \cdots, 1)^{T}$. Since $\mathcal{A}$ is an $H$ matrix, by Theorem 2.8, there exists a vector $r>0$ such that $\langle\mathcal{A}\rangle r=$ $\mathbf{e}>0$. We show that $\left\langle\mathcal{A}_{\beta}\right\rangle$ is an $M$-matrix. Note that

$$
\left(\left\langle\mathcal{A}_{\beta}\right\rangle r\right)_{1}=r_{1}-\sum_{j=2}^{n}\left|a_{1 j}\right| r_{j}=(\langle\mathcal{A}\rangle r)_{1}>0 .
$$

For $i=2, \cdots, n$, we have

$$
\begin{aligned}
\left(\left\langle\mathcal{A}_{\beta}\right\rangle r\right)_{i} & =\left|1-\beta_{i-1} a_{i, i-1} a_{i-1, i}\right| r_{i}-\sum_{j \neq i}\left|a_{i j}-\beta_{i-1} a_{i, i-1} a_{i-1, j}\right| r_{j} \\
& \geq r_{i}-\beta_{i-1}\left|a_{i, i-1} a_{i-1, i}\right| r_{i}-\sum_{j \neq i, i-1}\left|a_{i j}\right| r_{j} \\
& -\sum_{j \neq i, i-1} \beta_{i-1}\left|a_{i, i-1} a_{i-1, j}\right| r_{j}-\left|a_{i, i-1}\right|\left|1-\beta_{i-1}\right| r_{i-1} \\
& \geq(\langle\mathcal{A}\rangle r)_{i}+\left|a_{i, i-1}\right| r_{i-1}-\beta_{i-1}\left|a_{i, i-1}\right|\left[\left|a_{i-1, i}\right| r_{i}\right. \\
& \left.+\sum_{j \neq i, i-1}\left|a_{i-1 j}\right| r_{j}\right]-\left|a_{i, i-1}\right|\left|1-\beta_{i-1}\right| r_{i-1} \\
& =1+\left|a_{i, i-1}\right| r_{i-1}-\beta_{i-1}\left|a_{i, i-1}\right|\left[-(\langle\mathcal{A}\rangle r)_{i}+r_{i-1}\right] \\
& -\left|a_{i, i-1}\right|\left|1-\beta_{i-1}\right| r_{i-1} \\
& =1+\left|a_{i, i-1}\right| r_{i-1}-\beta_{i-1}\left|a_{i, i-1}\right|\left[-1+r_{i-1}\right]-\left|a_{i, i-1}\right|\left|1-\beta_{i-1}\right| r_{i-1} \\
& =1+\beta_{i-1}\left|a_{i, i-1}\right|+\left[1-\beta_{i-1}-\left|1-\beta_{i-1}\right|\right]\left|a_{i, i-1}\right| r_{i-1} .
\end{aligned}
$$

If $0 \leq \beta_{i} \leq 1$, then

$$
\left(\left\langle\mathcal{A}_{\beta}\right\rangle r\right)_{i}=1+\beta_{i-1}\left|a_{i, i-1}\right|>0 .
$$

Therefore, $\left\langle\mathcal{A}_{\beta}\right\rangle$ is an $M$-matrix and $\mathcal{A}_{\beta}$ is an $H$-matrix.
If $\beta_{i}>1$, then

$$
\begin{aligned}
\left(\left\langle\mathcal{A}_{\beta}\right\rangle r\right)_{i}= & 1+2\left|a_{i, i-1}\right| r_{i-1}-\left(2 r_{i-1}-1\right) \beta_{i}\left|a_{i, i-1}\right| \\
& >1+2\left|a_{i, i-1}\right| r_{i-1}-\left(2 r_{i-1}-1\right)\left[1+\frac{\left|a_{i, i-1}\right|+1}{\left|a_{i, i-1}\right|\left(2\left\|\langle\mathcal{A}\rangle^{-1}\right\|_{\infty}-1\right)}\right] \\
& \left|a_{i, i-1}\right| \\
\geq & 1+\left|a_{i, i-1}\right|-\left(2\left\|\langle\mathcal{A}\rangle^{-1}\right\|_{\infty}-1\right)\left|a_{i, i-1}\right| \frac{\left|a_{i, i-1}\right|+1}{\left|a_{i, i-1}\right|\left(2| |\langle\mathcal{A}\rangle^{-1} \|_{\infty}-1\right)} \\
= & 0 .
\end{aligned}
$$

Therefore, $\left\langle\mathcal{A}_{\beta}\right\rangle$ is an $M$-matrix and $\mathcal{A}_{\beta}$ is an $H$-matrix, and by Lemma 4.4, $\rho\left(\tilde{L}_{r \omega}\right)<1$.

For the SOR iterative method, the following corollary holds.
Corollary 4.7. Let $\mathcal{A}$ be an $H$-matrix. Then $\mathcal{A}_{\beta}$ is an $H$-matrix and $\rho\left(\tilde{L}_{\omega}\right)<1$ for $\beta_{i} \in\left[0, \beta_{i}^{\prime}\right), i=1,2, \cdots, n-1$.

## 5. Numerical experiments

In this section, we give some numerical examples to show efficiency of the preconditioned AOR method.

Example 1. Suppose that the coefficient matrix $\mathcal{A}$ is as follows:

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & -0.1 & -0.06 & -0.35 & -0.22 \\
-0.16 & 1 & -0.04 & -0.08 & -0.28 \\
-0.2 & -0.1 & 1 & -0.12 & -0.2 \\
-0.06 & -0.24 & -0.17 & 1 & -0.05 \\
-0.32 & -0.22 & -0.1 & -0.15 & 1
\end{array}\right)
$$

The coefficient matrix $\mathcal{A}$ is an $L$-matrix. Let $\beta_{1}=0.86, \beta_{2}=0.79$, $\beta_{3}=0.95$ and $\beta_{4}=0.92$. For $r=0.3093, \omega=0.9827$, we have $\rho\left(\tilde{L}_{r \omega}\right)=$ $0.5760<\rho\left(L_{r \omega}\right)=0.6107$, and for $r=\omega=0.66$ we get $\rho\left(\tilde{L}_{\omega}\right)=$ $0.6735<\rho\left(L_{\omega}\right)=0.6916$.
The matrix $\mathcal{A}$ is also an $H$-matrix. Let $\beta_{1}=3, \beta_{2}=2.6, \beta_{3}=4$ and $\beta_{4}=2$. For $r=0.3093$ and $\omega=0.9827$ we get $\rho\left(\tilde{L}_{r \omega}\right)=0.4892<$ $\rho\left(L_{r \omega}\right)=0.6107$ and for $r=\omega=0.85$ we get $\rho\left(\tilde{L}_{\omega}\right)=0.5009<\rho\left(L_{\omega}\right)=$ 0.5536 .

Example 2. Suppose that the coefficient matrix $\mathcal{A}$ is given by

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & -\frac{1}{2 \times 10+1} & -\frac{1}{3 \times 10+1} & \cdots & -\frac{1}{n \times 10+1} \\
-\frac{1}{2 \times 10+2} & 1 & -\frac{1}{3 \times 10+2} & \cdots & -\frac{1}{n \times 10+2} \\
-\frac{1}{3 \times 10+3} & -\frac{1}{2 \times 10+3} & 1 & \cdots & -\frac{1}{n \times 10+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n \times 10+n} & -\frac{1}{(n-1) \times 10+n} & -\frac{1}{(n-2) \times 10+n} & \cdots & 1
\end{array}\right)
$$

We take $\beta_{i}=0.98$ for all $i=1,2, \cdots, n-1$. Table 1 shows the spectral radii, $\rho\left(L_{r \omega}\right)$ and $\rho\left(\tilde{L}_{r \omega}\right)$, of AOR method and the preconditioned AOR method, respectively, for different values of $n$ and various $r$ and $\omega$. As this table shows, we have $\rho\left(L_{r \omega}\right)<\rho\left(\tilde{L}_{r \omega}\right)$ for each case.
Example 3. Suppose that the coefficient matrix $\mathcal{A}$ is as

$$
\mathcal{A}=\left(\begin{array}{ccccc}
1 & 0.2 & -0.2 & 0.2 & 0.1 \\
0.4 & 1 & 0.2 & -0.2 & 0.1 \\
-0.5 & 0.2 & 1 & 0.1 & -0.1 \\
0.3 & -0.6 & 0.3 & 1 & 0.1 \\
0.8 & 0.3 & -0.2 & 0.4 & 1
\end{array}\right) .
$$

Table 1. Numerical results for Example 2.

| $n$ | $r$ | $\omega$ | $\rho\left(L_{r \omega}\right)$ | $\rho\left(\tilde{L}_{r \omega}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| 50 | 0.45 | 0.78 | 0.3902 | 0.3799 |
| 100 | 0.38 | 0.96 | 0.2903 | 0.2784 |
| 150 | 0.37 | 0.96 | 0.3076 | 0.2971 |
| 200 | 0.28 | 0.95 | 0.3399 | 0.3294 |

The coefficient matrix $\mathcal{A}$ is an $H$-matrix. Let $\beta_{1}=0.99, \beta_{2}=0.8$, $\beta_{3}=0.56$ and $\beta_{4}=0.87$. For $r=0.35, \omega=0.98$, we have $\rho\left(\tilde{L}_{r \omega}\right)=$ $0.7533<\rho\left(L_{r \omega}\right)=0.7936$, and for $r=\omega=0.88$ we get $\rho\left(\tilde{L}_{\omega}\right)=$ $0.7043<\rho\left(L_{\omega}\right)=0.7323$.
Let $\beta_{1}=2.5, \beta_{2}=2.01, \beta_{3}=2.92$ and $\beta_{4}=2.21$. For $r=0.58, \omega=0.95$, we have $\rho\left(\tilde{L}_{r \omega}\right)=0.6346<\rho\left(L_{r \omega}\right)=0.7706$, and for $r=\omega=0.89$ we get $\rho\left(\tilde{L}_{\omega}\right)=0.6440<\rho\left(L_{\omega}\right)=0.7267$.

## References

[1] Qingbing Liu, Guoliang Chen, Jing Cai, Convergence analysis of the preconditioned Gauss-Seidel method for $H$-matrices, Computer Math. Appl. 56 (2008) 2048-2053.
[2] T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving the Gauss-Seidel method for Z-matrices, Linear Algebra Appl., 267 (1997) 113-123.
[3] M.T. Darvishi, P. Hessari, B.-Y. Shin, Preconditioned modified AOR method for systems of linear equations, Comm. Numer. Meth. Engng., (in press), doi:10.1002/cnm. 1330 .
[4] A. Neumaier, On the comparison of $H$-matrices with $M$-matrices, Linear Algebra Appl. 83 (1986) 135-141.
[5] C. Li, D.J. Evans, Improving the SOR method, Techincal Report 901, Department of computer studies, University of Loughborough, 1994.
[6] A. Berman, R.J. Lemmons, Nonnegative matrices in the mathematics sciences, SIAM, Philadelphia, PA, 1994.
[7] R.S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962; Springer Series in Computational Mathematics, vol. 27, Springer-Verlag, Berlin, 2000.
[8] W. Li, W.W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Linear Algebra Appl. 317 (2000) 227-240.
[9] D.M. Young, Iterative solution for large linear systems, Academic press, New York, (1971).
[10] Y.Z. Song, Comparisons of nonnegative splitting of matrices, Linear Algebra Appl. 154-156 (1991) 433-455.
[11] Y.T. Li, S. Yang, A multi-parameters preconditioned AOR iterative method for linear systems, Appl. Math. Comput. 206 (2008) 465-473.
${ }^{a}$ Department of Mathematics, Chonnam National University, South Korea
${ }^{b}$ Department of Mathematics,
Razi University, Kermanshah 67149,
Iran


[^0]:    Received May 12, 2010. Accepted August 27, 2010.
    Key words and phrases: Preconditioner; AOR iterative method; $H$-matrix; $L$-matrix.
    [1] Corresponding author. Fax: +82-62-530-3339. Email address: bcshin@jnu.ac.kr.

    The author was financially supported by special research program of Chonnam National University, 2009.

