DOI QR코드

DOI QR Code

Radial Variations in the Lengths of Wood Fibers and Vessel Elements in the Stem of Chestnut (Castanea crenata) Grown in Korea

국내산 밤나무 수간 내 목섬유 및 도관요소 길이의 방사방향 변이성

  • Lee, Seon-Hwa (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kwon, Sung-Min (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Sung-Jae (Forest Research Institute of Kangwon Province) ;
  • Febrianto, Fauzi (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University) ;
  • Kim, Nam-Hun (College of Forest and Environmental Sciences, Kangwon National University)
  • 이선화 (강원대학교 산림환경과학대학) ;
  • 권성민 (강원대학교 산림환경과학대학) ;
  • 이성재 (강원도산림개발연구원) ;
  • ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2010.04.16
  • Accepted : 2010.07.16
  • Published : 2010.11.25

Abstract

Radial variations in the lengths of wood fibers and vessel elements in the stem of chestnut (Castanea crenata) grown in Korea were investigated to get some fundamental information for efficient use of wood. Seven chestnut cultivars (Tanzawa, Ibuki, Arima, Ginyose, Tsukuba, Riheiguri, and Mansung) were examined in this study. The lengths of wood fibers and vessel elements were measured and analyzed by an optical microscope and an imaging analysis system. In all chestnut cultivars, the wood fiber length of latewood was longer than that of earlywood, and increased with the increase of growth ring number. Similarly, vessel element length of latewood was longer than that of earlywood, and showed increasing tendency with the increase of growth ring number. Consequently, it was considered that the lengths of wood fibers and vessel elements could be used for separating juvenile wood from adult wood in the chestnut stem.

국내산 밤나무 목재의 효율적 이용을 위한 기초 자료를 얻기 위하여 밤나무 7품종(단택, 이취, 이평, 만성, 은기, 유마, 축파)의 목섬유 및 도관요소 길이를 대상으로 방사방향 변이성을 조사하였다. 목섬유 및 도관요소 길이는 조재와 만재 부위를 구별하여 3연륜 간격으로 광학현미경과 화상분석기를 사용하여 측정하였다. 밤나무 수간에 있어 만재 목섬유의 길이가 조재의 것보다 다소 더 길었으며, 조재 및 만재 모두에 있어 연륜 증가에 따라 목섬유 길이가 증가하는 경향이 나타났다. 이와 유사하게, 만재 도관요소의 길이 역시 조재의 것보다 다소 더 길었으며, 조재 및 만재 모두에 있어 연륜 증가에 따라 도관요소의 길이가 완만하게 증가하는 경향을 보였다. 결론적으로 밤나무 수간에 있어서의 목섬유 및 도관요소의 길이는 성숙재와 미성숙재를 판단하는 재질 지표로 이용될 수 있을 것으로 생각된다

Keywords

References

  1. 김만조, 김선창, 이욱. 2006. 한국의 밤나무품종. 국립산림과학원.
  2. 박상진. 1981. 환공재 주요 구성요소의 방사방향 변동. 목재공학 9(3): 1-6.
  3. 박상진, 박병대. 1987. 한국산 주요 산공재의 도관요소 형태변이. 목재공학 15(3): 1-13.
  4. 박상진, 이원용, 이화형. 1987. 목재조직과 식별. 향문사.
  5. 오승원. 1997. 소나무의 해부학적 특성과 종압축강도와의 관계. 목재공학 25(2): 27-32.
  6. 이선화, 권성민, 박병호, 이성재, 이욱, 김만조, 김남훈. 2008. 국산목재의 고급가구 및 목공계 용재 개발을 위한 기초연구 -국내산 밤나무 7품종의 해부 및 물리적 특성-. 목재공학 36(6): 23-32.
  7. 이선화, 권성민, 이성재, 이욱, 김만조, 김남훈. 2009. 국내산 밤나무 목재의 해부학적 특성의 방사방향 변이성 -도관요소 및 방사조직-. 목재공학 37(1): 19-28.
  8. 이찬호, 박정환, 김영채. 1997. 주요 침엽수 조임목의 재질변이에 관한 연구 (I) -잣나무, 낙엽송, 편백의 해부학적 성질. 목재공학 25(2): 117-126.
  9. 이필우. 1994. 한국산 목재의 구조. 정민사.
  10. 한철수. 1984. 주요 산공재의 조직학적 연구II -자작나무속의 목섬유 및 도관의 변이-. 목재공학 12(6): 3-6.
  11. 한철수. 1987. 주요 산공재 구성요소의 방사방향변동에 관한 연구. 목재공학 15(2): 26-52.
  12. 日本木材加工技術協會. 1984. 日本の木材.
  13. Bhat, K. M., K. V. Bhat, and T. K. Dhamodaran 1990. Wood deasity and filler length of Eucalyptus grandis grown in Kerala, India. Wood and Fiber Science 22(1): 54-61.
  14. DeBell, D. S., R. Singleton, C. A. Harrinton, and B. L. Gartner. 2002. Wood density and fiber length in young Populus stems: Relation to clone, age, growth rate, and pruning. Wood and Fiber Science 34(4): 529-539.
  15. Gartner, B. L., H. Lei, and M. R. Milota. 1997. Variation of anatomy and specific gravity of wood within and between trees of red alder (Alnus rubra Bong.). Wood and Fiber Science 29(1): 10-20.
  16. Helinska-Raczkowska, L. and E. Fabisiak. 1999. Radial variation of earlywood vessel lumen diameter as an indicator of the juvenile growth period in ash. Holz als Roh- und Werkstoff 57: 283-286. https://doi.org/10.1007/s001070050059
  17. IAWA Committee. 1989. IAWA list of micro-scopic features for hardwood identification. Wheeler E A. P. Baas & P. E Gasson (eds.). IAWA Bull, n s. 10: 219-332 https://doi.org/10.1163/22941932-90000496
  18. Koubaa, A., R. E. Hernandez, M. Beaudoin, and J, Poliquin. 1998. Interclonal, intraclonal, and with-in-tree variation in fiber length of poplar hybrid clones. Wood and Fiber Science 30(1): 40-47.
  19. Olson, J. R. and S. B. Carpenter. 1985. Specific-gravity, fiber length, and extractive content of young paulownia. Wood and Fiber Science 17(4): 428-438.
  20. Robinson, T. L. and C. W. Mize 1987. Specific gravity and filler length variation in a European black alder provenance study. Wood and Fiber Science 19(3): 225-232.
  21. Sharma, S. K., R. V. Rao, S. R. Shukla, P. Kumar. R Sudheendra, M. Sujatha, and Y. M. Dubey. 2005. Wood quality of coppiced Eucalyptus tereticornis for value addition. IAWA Journal 26(1): 137-147. https://doi.org/10.1163/22941932-90001608
  22. Stringer, J. W. and J. R. Olson. 1987. Radial and vertical variation in stem properties of juvenile black locust (Robinia pseudoacacia). Wood and Fiber Science 19(1): 59-67.
  23. Taylor, F. W. 1976. Fiber length variation within growth rings of certain angiosperms. Wood and Fiber Science 8(2): 116-119.
  24. Tsoumis, G. 1991. Science and technology of wood: Structure, properties, utilization. Van Nostrand Reinhold.