DOI QR코드

DOI QR Code

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Received : 2010.04.01
  • Accepted : 2010.05.12
  • Published : 2010.06.25

Abstract

A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

Keywords

References

  1. K. H. Lee and H. R. Nicholls, Mechatronics, 9, 1 (1999) [DOI: 10.1016/S0957-4158(98)00045-2].
  2. V. Duchaine, N. Lauzier, M. Baril, M.-A. Lacasse, and C. Gosselin, IEEE International Conference on Robotics and Automation (ICRA '09) (Kobe, Japan 2009 May 12-17) p. 3676. [DOI: 10.1109/ROBOT.2009.5152595].
  3. E. S. Hwang, J. H. Seo, and Y. J. Kim, J. Microelectromech. Syst. 16, 556 (2007) [DOI: 10.1109/JMEMS.2007.896716].
  4. T. Mei, W. J. Li, Y. Ge, Y. Chen, L. Ni, and M. H. Chan, Sens. Actuators A 80, 155 (2000) [DOI: 10.1016/S0924-4247(99)00261-7].
  5. B. J. Kane, M. R. Cutkosky, and G. T. A. Kovacs, Sen. Actuators A 54, 511 (1996) [DOI: 10.1016/S0924-4247(95)01191-9].
  6. M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, and G. Zimmer, Sens. Actuators A 84, 236 (2000) [DOI: 10.1016/S0924-4247(00)00310-1].
  7. E. S. Kolesar Jr. and C. S. Dyson, J. Microelectromech Syst. 4, 87 (1995) [DOI: 10.1109/84.388117].
  8. J. Engel, J. Chen, Z. Fan, and C. Liu, Sens. Actuators A 117, 50 (2005) [DOI: 10.1016/j.sna.2004.05.037].
  9. J. Engel, J. Chen, and C. Liu, J. Micromech. Microeng. 13, 359 (2003) [DOI: 10.1088/0960-1317/13/3/302].
  10. J. H. Kim, H. J. Kwon, Y. K. Park, M. S. Kim, D. I. Kang, and J. H. Choi, Input Method of Date Using Tactile Sensor, Korea Patent 784956, 2007.
  11. J. H. Kim, W. C. Choi, Y. K. Park, J. I. Lee, M. S. Kim, J. H. Choi, and D. I. Kang, Fabrication Method of Flexible Tactile Sensor Using Polymer Film, Korea Patent 735295, 2007.
  12. J. H. Kim, W. C. Choi, H. J. Kwon, and D. I. Kang, 5th IEEE Conference on Sensors (Daegu, Korea 2006 Oct. 22-25) p. 1468. [DOI: 10.1109/ICSENS.2007.355911].

Cited by

  1. Characterization and modeling of a piezoresistive three-axial force micro sensor vol.201, 2013, https://doi.org/10.1016/j.sna.2013.07.001
  2. Electrode for Force Sensor of Conductive Rubber vol.02, pp.03, 2012, https://doi.org/10.4236/jst.2012.23018
  3. An overview of micro-force sensing techniques vol.234, 2015, https://doi.org/10.1016/j.sna.2015.09.028
  4. A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping vol.199, 2013, https://doi.org/10.1016/j.sna.2013.05.002
  5. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand vol.2015, 2015, https://doi.org/10.1155/2015/846487
  6. Polymer-based flexible capacitive sensor for three-axial force measurements vol.23, pp.1, 2013, https://doi.org/10.1088/0960-1317/23/1/015009
  7. Development of nanoparticle film-based multi-axial tactile sensors for biomedical applications vol.196, 2013, https://doi.org/10.1016/j.sna.2013.03.021
  8. A Sputtering Deposition of Al Enhances the Output Reproducibility in a Conducting Rubber Force Sensor vol.06, pp.03, 2016, https://doi.org/10.4236/jst.2016.63004
  9. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review vol.14, pp.12, 2014, https://doi.org/10.3390/s140305296
  10. A Flexible Capacitive Tactile Sensor Array With CMOS Readout Circuits for Pulse Diagnosis vol.15, pp.2, 2015, https://doi.org/10.1109/JSEN.2014.2360777
  11. Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis vol.25, pp.7, 2015, https://doi.org/10.1088/0960-1317/25/7/075025
  12. Tactile sensing for dexterous in-hand manipulation in robotics—A review vol.167, pp.2, 2011, https://doi.org/10.1016/j.sna.2011.02.038
  13. Conducting Rubber Force Sensor: Transient Characteristics and Radiation Heating Effect vol.03, pp.03, 2013, https://doi.org/10.4236/jst.2013.33007
  14. A Flexible and Wearable Human Stress Monitoring Patch vol.6, pp.1, 2016, https://doi.org/10.1038/srep23468
  15. Flexible Touch Sensors Made of Two Layers of Printed Conductive Flexible Adhesives vol.16, pp.12, 2016, https://doi.org/10.3390/s16091515
  16. Study on signal characteristic analysis of multi-axis load measurement sensors vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115004
  17. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester vol.557, 2014, https://doi.org/10.1088/1742-6596/557/1/012026
  18. A Flexible Piezoelectric Pulsewave Energy Harvester for Application to High-Efficiency Multi-Functional Skin Patches vol.25, pp.2, 2016, https://doi.org/10.1109/JMEMS.2016.2518704
  19. Fingertip Three-Axis Tactile Sensor for Multifingered Grasping vol.20, pp.4, 2015, https://doi.org/10.1109/TMECH.2014.2357793
  20. Modeling and Validation of Vertical Direction Force Estimation with a Three-Dimensional Force Measurement Instrument Based on a Zero-Compliance Mechanism vol.19, pp.4, 2019, https://doi.org/10.3390/s19040799