DOI QR코드

DOI QR Code

Mutations in the gyrB, parC, and parE Genes of Quinolone-Resistant Isolates and Mutants of Edwardsiella tarda

  • Kim, Myoung-Sug (Pathology Division, National Fisheries Research and Development Institute) ;
  • Jun, Lyu-Jin (Faculty of Applied Marine Science, College of Ocean Science, Jeju National University) ;
  • Shin, Soon-Bum (Food and Safety Research Center, National Fisheries Research and Development Institute) ;
  • Park, Myoung-Ae (Pathology Division, National Fisheries Research and Development Institute) ;
  • Jung, Sung-Hee (Pathology Division, National Fisheries Research and Development Institute) ;
  • Kim, Kwang-Il (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Moon, Kyung-Ho (College of Pharmacy, Kyungsung University) ;
  • Jeong, Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2010.09.06
  • Accepted : 2010.10.19
  • Published : 2010.12.28

Abstract

The full-length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity), and Salmonella Typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinolone-resistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83$\rightarrow$Arg). However, an alteration in the QRDR of ParC (Ser84$\rightarrow$Ile) following an amino acid substitution in GyrA (Asp87$\rightarrow$Gly) was detected in E. tarda mutants selected in vitro at $8{\mu}g/ml$ ciprofloxacin (CIP). A mutant with a GyrB (Ser464$\rightarrow$Leu) and GyrA (Asp87$\rightarrow$Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.

Keywords

References

  1. Aoki, T. 1988. Drug-resistant plasmids from fish pathogens. Microbiol. Sci. Rev. 5: 219-223.
  2. Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 54: 130-197.
  3. Bebear, C. M., O. Grau, A. Charron, H. Renaudin, D. Gruson, and C. Bebear. 2000. Cloning and nucleotide sequence of the DNA gyrase (gyrA) gene from Mycoplasma hominis and characterization of quinolone-resistant mutants selected in vitro with trovafloxacin. Antimicrob. Agents Chemother. 44: 2719-2727. https://doi.org/10.1128/AAC.44.10.2719-2727.2000
  4. Beckmann, L., M. Muller, P. Luber, C. Schrader, E. Bartelt, and G. Klein. 2004. Analysis of gyrA mutations in quinolone-resistant and -susceptible Campylobacter jejuni isolates from retail poultry and human clinical isolates by non-radioactive single-strand conformation polymorphism analysis and DNA sequencing. J. Appl. Microbiol. 96: 1040-1047. https://doi.org/10.1111/j.1365-2672.2004.02242.x
  5. Belland, R., S. G. Morrison, C. Ison, and W. M. Huang. 1994. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol. Microbiol. 14: 371-380. https://doi.org/10.1111/j.1365-2958.1994.tb01297.x
  6. Blanche, R., B. Cameron, F. X. Bernard, L. Maton, B. Manse, L. Ferrero, et al. 1996. Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases. Antimicrob. Agents Chemother. 40: 2714-2720.
  7. Bjorkman, J., I. Nagaev, and O. G. Berg. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 1479-1482. https://doi.org/10.1126/science.287.5457.1479
  8. Cecile, M. B., A. Charron, J. M. Bove, C. Bebear, and J. Renaudin. 1998. Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. Antimicrob. Agents Chemother. 42: 2024-2031.
  9. Chen, C. R., M. Malik, M. Snyder, and K. Drlica. 1996. DNA gyrase and topoisomerase IV on the bacterial chromosome: Quinolone-induced DNA cleavage. J. Mol. Biol. 258: 627-637. https://doi.org/10.1006/jmbi.1996.0274
  10. Colman, S. D., P. C. Hu, and K. F. Bott. 1990. Mycoplasma pneumoniae DNA gyrase genes. Mol. Microbiol. 4: 1129-1134. https://doi.org/10.1111/j.1365-2958.1990.tb00687.x
  11. Deborah, J. E., L. Randall, D. T. Gray, A. Buckley, M. J. Woodward, A. P. White, and L. J. V. Piddock. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 48: 4012-4015. https://doi.org/10.1128/AAC.48.10.4012-4015.2004
  12. Deguchi, T., M. Yasuda, M. Nakano, S. Ozeki, E. Kanematsu, Y. Kawada, T. Ezaki, and I. Saito. 1996. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 40: 2437-2438.
  13. Drlica, K. and X. Zhao. 1997. Gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61: 377-392.
  14. Ferrero, L., B. Cameron, and J. Crouzet. 1995. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 39: 1554-1558. https://doi.org/10.1128/AAC.39.7.1554
  15. Gensberg, K., Y. F. Jin, and L. J. Piddock. 1995. A novel gyrB mutation in a fluoroquinolone-resistant clinical isolate of Salmonella Typhimurium. FEMS Microbiol. Lett. 132: 57-60. https://doi.org/10.1111/j.1574-6968.1995.tb07810.x
  16. Georgiou, M., R. Munoz, F. Roman, R. Canton, R. Gomez-Lus, J. Campos, and A. G. D. L. Campa. 1996. Ciprofloxacin-resistant Haemophilus influenzae strains possess mutations in analogous positions of GyrA and ParC. Antimicrob. Agents Chemother. 40: 1741-1744.
  17. Gonzalez, I., M. Georgiou, F. Alcaide, D. Balas, J. Linares, and A. G. Campa. 1998. Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci. Antimicrob. Agents Chemother. 42: 2792-2798.
  18. Heisig, P. 1993. High-level fluoroquinolone resistance in a Salmonella Typhimurium isolate due to alterations in both gyrA and gyrB genes. J. Antimicrob. Chemother. 32: 367-378. https://doi.org/10.1093/jac/32.3.367
  19. Heisig, P. 1996. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 40: 879-885.
  20. Hopewell, R., M. Oram, R. Briesewitz, and L. M. Fisher. 1990. DNA cloning and organization of the Staphylococcus aureus gyrA and gyrB genes: Close homology among gyrase proteins and implications for 4-quinolone action and resistance. J. Bacteriol. 172: 3481-3484.
  21. Horowitz, D. S. and J. C. Wang. 1987. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J. Biol. Chem. 262: 5339-5344.
  22. Jalal, S. and B. Wretlind. 1998. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb. Drug Res. 4: 257-261. https://doi.org/10.1089/mdr.1998.4.257
  23. Kato, J., Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63: 393-404. https://doi.org/10.1016/0092-8674(90)90172-B
  24. Khodursky, A. B., E. L. Zechiedrich, and N. R. Cozzarelli. 1995. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 11801-11805. https://doi.org/10.1073/pnas.92.25.11801
  25. Kim, S. H., O. Y. Lim, S. H. Kim, J. Y. Kim, Y. H. Kang, and B. K. Lee. 2003. Pulsed-field gel electrophoresis and mutation typing of gyrA gene of quinolone-resistant Salmonella enterica serovar Paratyphi A isolated from outbreak and sporadic cases, 1998-2002, Korea. J. Microbiol. Biotechnol. 13: 155-158.
  26. Lee, K. E., M. Y. Lee, J. Y. Lim, J. H. Jung, Y. H. Park, and Y. H. Lee. 2008. Contamination of chicken meat with Salmonella enterica serovar Haardt with nalidixic acid resistance and reduced fluoroquinolone susceptibility. J. Microbiol. Biotechnol. 18: 1853-1857.
  27. Lindback, E., M. Rahman, S. Jalal, and B. Wretlind. 2002. Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 110: 651-657. https://doi.org/10.1034/j.1600-0463.2002.1100909.x
  28. Ling, J. M., E. W. Chan, A. W. Lam, and A. F. Cheng. 2003. Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob. Agents Chemother. 47: 3567-3573. https://doi.org/10.1128/AAC.47.11.3567-3573.2003
  29. Margerrison, E., R. Hopewell, and L. M. Fisher. 1992. Nucleotide sequence of the Staphylococcus aureus gyrB-gyrA locus encoding the DNA gyrase A and B proteins. J. Bacteriol. 174: 1596-1603.
  30. Mclver, C. J., T. R. Hogan, P. A. White, and J. W. Tapsall. 2004. Patterns of quinolone susceptibility in Campylobacter jejuni associated with different gyrA mutations. Pathology. 36: 166-169. https://doi.org/10.1080/00313020410001672019
  31. Moriya, S., N. Ogasawara, and H. Yoshikawa. 1985. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 13: 2251-2265. https://doi.org/10.1093/nar/13.7.2251
  32. Nakamura, S. 1997. Mechanisms of quinolone resistance. J. Infect. Chemother. 3: 128-138. https://doi.org/10.1007/BF02491502
  33. Nakano, M., T. Deguchi, T. Kawamura, M. Yasuda, M. Kimura, Y. Okano, and Y. Kawada. 1997. Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41: 2289-2291.
  34. Ng, E. Y., M. Trucksis, and D. C. Hooper. 1996. Quinolone resistance mutations in topoisomerase IV: Relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents Chemother. 40: 1881-1888.
  35. Oram, M. and M. Fisher. 1991. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob. Agents Chemother. 35: 387-389. https://doi.org/10.1128/AAC.35.2.387
  36. Ouabdesselam, S., D. C. Hooper, J. Tankovic, and C. J. Soussy. 1995. Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations. Antimicrob. Agents Chemother. 39: 1667-1670. https://doi.org/10.1128/AAC.39.8.1667
  37. Pan, X. and L. M. Fisher. 1996. Cloning and characterization of the parC and parE genes of Streptococcus pneumoniae encoding DNA topoisomerase IV: Role in fluoroquinolone resistance. J. Bacteriol. 178: 4060-4069.
  38. Shin, S. B., M. H. Yoo, J. B. Jeong, Y. M. Kim, J. K. Chung, M. D. Huh, J. L. Komisar, and H. D. Jeong. 2005. Molecular cloning of the gyrA gene and characterization of its mutation in clinical isolates of quinolone-resistant Edwardsiella tarda. Dis. Aquat. Org. 67: 259-266. https://doi.org/10.3354/dao067259
  39. Springer, A. L. and M. B. Schmid. 1993. Molecular characterization of the Salmonella Typhimurium parE gene. Nucleic Acids Res. 21: 1805-1809. https://doi.org/10.1093/nar/21.8.1805
  40. Stein, D. C., R. J. Danaher, and T. M. Cook. 1991. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 35: 622-626. https://doi.org/10.1128/AAC.35.4.622
  41. Stock, I. and B. Wiedemann. 2001. Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrob. Agents Chemother. 45: 2245-2255. https://doi.org/10.1128/AAC.45.8.2245-2255.2001
  42. Trees, D. L., A. L. Sandul, W. L. Whittington, and J. S. Knapp. 1998. Identification of novel mutation patterns in the parC gene of ciprofloxacin-resistant isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 42: 2103-2105.
  43. Yamagishi, J., H. Yoshida, M. Yamayoshi, and S. Nakamura. 1986. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol. Gen. Genet. 204: 367-373. https://doi.org/10.1007/BF00331012

Cited by

  1. DNA Gyrase and Topoisomerase IV Mutations and their effect on Quinolones Resistant Proteus mirabilis among UTIs Patients vol.36, pp.6, 2020, https://doi.org/10.12669/pjms.36.6.2207