DOI QR코드

DOI QR Code

Purification and Characterization of a Ubiquitin-like System for Autophagosome Formation

  • Bae, Ju-Young (Graduate school of Biochemistry, Yeungnam University) ;
  • Park, Hyun-Ho (Graduate school of Biochemistry, Yeungnam University)
  • Received : 2010.07.30
  • Accepted : 2010.08.28
  • Published : 2010.12.28

Abstract

Autophagy refers to the bulk degradation of cellular proteins and organelles through an autophagosome and plays a pivotal role in the development, cellular differentiation, aging, and elimination of aberrant structures. A failure of autophagy has been implicated in a growing list of mammalian disease states, including cancer and cardiomyopathy. Two ubiquitin-like systems are highly involved in autophagy, especially in the formation of autophagosomes. Here, we purified and characterized Atg7 (an E1-like enzyme), and Atg3 and Atg10 (E2-like enzymes) in order to gain an insight into the role played by ubiquitin-like systems in the formation of autophagosomes. Interestingly, we observed that Atg7 forms a homodimer to construct an active conformation, unlike other E1-like enzymes. Although Atg3 was detected as a monomer under physiological conditions, Atg10 existed in an oligomeric form, indicating that the mechanism by which Atg10 functions may differ from that of Atg3.

Keywords

References

  1. Abeliovich, H., W. A. Dunn Jr., J. Kim, and D. J. Klionsky. 2000. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J. Cell Biol. 151: 1025-1034. https://doi.org/10.1083/jcb.151.5.1025
  2. Abeliovich, H. and D. J. Klionsky. 2001. Autophagy in yeast: Mechanistic insights and physiological function. Microbiol. Mol. Biol. Rev. 65: 463-479. https://doi.org/10.1128/MMBR.65.3.463-479.2001
  3. Davenport, E. L., L. I. Aronson, and F. E. Davies. 2009. Starving to succeed. Autophagy 5: 1052-1054. https://doi.org/10.4161/auto.5.7.9510
  4. Eisenberg-Lerner, A., S. Bialik, H. U. Simon, and A. Kimchi. 2009. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16: 966-975. https://doi.org/10.1038/cdd.2009.33
  5. Geng, J. and D. J. Klionsky. 2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: Beyond the usual suspects' review series. EMBO Rep. 9: 859-864. https://doi.org/10.1038/embor.2008.163
  6. He, C. and D. J. Klionsky. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43: 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  7. Ichimura, Y., T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, et al. 2000. A ubiquitin-like system mediates protein lipidation. Nature 408: 488-492. https://doi.org/10.1038/35044114
  8. Kim, J. and D. J. Klionsky. 2000. Autophagy, cytoplasm-tovacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69: 303-342. https://doi.org/10.1146/annurev.biochem.69.1.303
  9. Klionsky, D. J. and S. D. Emr. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717-1721. https://doi.org/10.1126/science.290.5497.1717
  10. Lee, J. A. 2009. Autophagy in neurodegeneration: Two sides of the same coin. BMB Rep. 42: 324-330. https://doi.org/10.5483/BMBRep.2009.42.6.324
  11. Meijer, A. J. and P. Codogno. 2009. Autophagy: Regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 46: 210-240. https://doi.org/10.1080/10408360903044068
  12. Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. Klionsky, M. Ohsumi, and Y. Ohsumi. 1998. A protein conjugation system essential for autophagy. Nature 395: 395-398. https://doi.org/10.1038/26506
  13. Mizushima, N., H. Sugita, T. Yoshimori, and Y. Ohsumi. 1998. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273: 33889-33892. https://doi.org/10.1074/jbc.273.51.33889
  14. Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2003. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 35: 553-561. https://doi.org/10.1016/S1357-2725(02)00343-6
  15. Morselli, E., L. Galluzzi, O. Kepp, J. M. Vicencio, A. Criollo, M. C. Maiuri, and G. Kroemer. 2009. Anti- and pro-tumor functions of autophagy. Biochim. Biophys. Acta 1793: 1524-1532. https://doi.org/10.1016/j.bbamcr.2009.01.006
  16. Ohsumi, Y. and N. Mizushima. 2004. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15: 231-236. https://doi.org/10.1016/j.semcdb.2003.12.004
  17. Reggiori, F. and D. J. Klionsky. 2002. Autophagy in the eukaryotic cell. Eukaryot. Cell 1: 11-21. https://doi.org/10.1128/EC.01.1.11-21.2002
  18. Stromhaug, P. E. and D. J. Klionsky. 2001. Approaching the molecular mechanism of autophagy. Traffic 2: 524-531. https://doi.org/10.1034/j.1600-0854.2001.20802.x
  19. Van Limbergen, J., C. Stevens, E. R. Nimmo, D. C. Wilson, and J. Satsangi. 2009. Autophagy: From basic science to clinical application. Mucosal Immunol. 2: 315-330. https://doi.org/10.1038/mi.2009.20
  20. Wang, C. W. and D. J. Klionsky. 2003. The molecular mechanism of autophagy. Mol. Med. 9: 65-76.
  21. Xie, Z., U. Nair, and D. J. Klionsky. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19: 3290-3298. https://doi.org/10.1091/mbc.E07-12-1292

Cited by

  1. Roles of endoplasmic reticulum stress and autophagy on H 2 O 2 -induced oxidative stress injury in HepG2 cells vol.18, pp.5, 2010, https://doi.org/10.3892/mmr.2018.9443