DOI QR코드

DOI QR Code

Comparison of the Genomes of Deinococcal Species Using Oligonucleotide Microarrays

  • Jung, Sun-Wook (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Joe, Min-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Im, Seong-Hun (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
  • Received : 2010.06.01
  • Accepted : 2010.09.15
  • Published : 2010.12.28

Abstract

The bacterium Deinococcus radiodurans is one of the most resistant organisms to ionizing radiation and other DNA-damaging agents. Although, at present, 30 Deinococcus species have been identified, the whole-genome sequences of most species remain unknown, with the exception of D. radiodurans (DRD), D. geothermalis, and D. deserti. In this study, comparative genomic hybridization (CGH) microarray analysis of three Deinococcus species, D. radiopugnans (DRP), D. proteolyticus (DPL), and D. radiophilus (DRPH), was performed using oligonucleotide arrays based on DRD. Approximately 28%, 14%, and 15% of 3,128 open reading frames (ORFs) of DRD were absent in the genomes of DRP, DPL, and DRPH, respectively. In addition, 162 DRD ORFs were absent in all three species. The absence of 17 randomly selected ORFs was confirmed by a Southern blot. Functional classification showed that the absent genes spanned a variety of functional categories: some genes involved in amino acid biosynthesis, cell envelope, cellular processes, central intermediary metabolism, and DNA metabolism were not present in any of the three deinococcal species tested. Finally, comparative genomic data showed that 120 genes were Deinococcus-specific, not the 230 reported previously. Specifically, ddrD, ddrO, and ddrH genes, previously identified as Deinococcus-specific, were not present in DRP, DPL, or DRPH, suggesting that only a portion of ddr genes are shared by all members of the genus Deinococcus.

Keywords

References

  1. Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10: 575-578.
  2. Bentchkou, E., P. Servant, G. Coste, and S. Sommer. 2010. A major role of the RecFOR pathway in DNA double-strandbreak repair through ESDSA in Deinococcus radiodurans. PLoS Genet. 6: e1000774. https://doi.org/10.1371/journal.pgen.1000774
  3. Blasius, M., S. Sommer, and U. Hubcher. 2008. Deinococcus radiodurans: What belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43: 221-238. https://doi.org/10.1080/10409230802122274
  4. Cox, M. M. and J. R. Batistta. 2005. Deinococcus radiodurans - the consummate survivor. Nature 6: 882-892.
  5. Earl, A. M., M. M. Mohundro, I. S. Mian, and J. R. Batistta. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 184: 6216-6224. https://doi.org/10.1128/JB.184.22.6216-6224.2002
  6. Eggington, J. M., N. Haruta, E. A. Wood, and M. M. Cox. 2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4: 2. https://doi.org/10.1186/1471-2180-4-2
  7. Eppinger, M., C. Baar, G. Raddatz, D. H. Huson, and S. Schuster. 2004. Comparative analysis of four Campylobacteriales. Nature 2: 872-885.
  8. Fuhrer, T., L. Chen, U. Sauer, and D. Vitkup. 2007. Computational prediction and experimental verification of the gene encoding the $NAD^{+}/NADP^{+}$-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189: 8073-8078. https://doi.org/10.1128/JB.01027-07
  9. Fukiya, S., H. Mizoguchi, T. Tobe, and H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186: 3911-3921. https://doi.org/10.1128/JB.186.12.3911-3921.2004
  10. Goshal, D., M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, A. Venkateswaran, et al. 2005. How radiation kills cells: Survival of Denicoccus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29: 361-375.
  11. Groot, A. D., R. Dulermo, P. Ortet, L. Blanchard, P. Guerin, B. Fernandez, et al. 2009. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet. 5: e1000434. https://doi.org/10.1371/journal.pgen.1000434
  12. Gutierrez-Preciado, A., R. A. Jensen, C. Yanofsky, and E. Merino. 2005. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Trends Genet. 21: 432-436. https://doi.org/10.1016/j.tig.2005.06.001
  13. Hua, Y., I. Narumi, G. Gao, B. Tain, and K. Satoh. 2003. PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 306: 354-360. https://doi.org/10.1016/S0006-291X(03)00965-3
  14. Kalin, S. and J. Mrazek. 2001. Predicted highly expressed and putative alien genes of Deinococcus radiodurans and implication for resistance to ionizing radiation damage. Proc. Natl. Acad. Sci. USA 98: 5240-5245. https://doi.org/10.1073/pnas.081077598
  15. Kitayama, S., Harsojo, and A. Matsuyama. 1980. Sensitization of Micrococcus radiophilus to gamma-rays by postirradiation incubation with chloramphenicol or at nonpermissive temperature. J. Radiat. Res. 21: 257-262. https://doi.org/10.1269/jrr.21.257
  16. Lloyd, R. G. and C. Buckman. 1991. Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J. Bacteriol. 173: 1004-1011.
  17. Makarova, K. S., L. Aravind, M. J. Daly, and E. V. Koonin. 2000. Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica 108: 25-34. https://doi.org/10.1023/A:1004035424657
  18. Makarova, K. S., L. Aravind, Y. I. Wolf, R. L. Tatusov, K. W. Minton, E. V. Koonin, and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. https://doi.org/10.1128/MMBR.65.1.44-79.2001
  19. Makarova, K. S., M. V. Omenchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. et al. 2007. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS ONE 9: e955.
  20. Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe. 2004. PprA: A novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54: 278-285. https://doi.org/10.1111/j.1365-2958.2004.04272.x
  21. Nishida, H. and I. Narumi. 2002. Disruption analysis of DR1420 and/or DR1758 in the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 148: 2911-2914.
  22. Norais, C., S. Chitteni-Pattu, E. A. Wood, R. B. Inman, and M. M. Cox. 2009. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J. Biol. Chem. 284: 21402-21411. https://doi.org/10.1074/jbc.M109.010454
  23. Omelchenko, M. V., Y. I. Wolf, E. Gaidamakova, V. T. MAtrosova, A. Vasilenko, M. Zhai, M. J. Daly, E. V. Koonin, and K. S. Makarova. 2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: Divergent routes of adaptation to thermophily and radiation resistance. BMC Evol. Biol. 5: 57. https://doi.org/10.1186/1471-2148-5-57
  24. Parker, C. T., B. Quinones, W. G. Miller, S. T. Horn, and R. E. Mandrell. 2006. Comparative genome analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44: 4125-4135. https://doi.org/10.1128/JCM.01231-06
  25. Prell, J., A. Bourdes, R. Karunakaran, M. Lopez-Gomez, and P. Poole. 2009. Pathway of $\gamma$-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its roles in symbiosis. J. Bacteriol. 191: 2177-2186. https://doi.org/10.1128/JB.01714-08
  26. Rodin, S., A. F. Andersson, V. Wirta, L. Ericsson, M. Ljungstrom, B. Bjorkholm, H. Lindmark, and L. Engstrand. 2008. Performance of a 70-mer oligonucleotide microarray for genotyping of Campylobacter jejuni. BMC Microbiol. 8: 73. https://doi.org/10.1186/1471-2180-8-73
  27. Rocha, E. P. C., E. Cornet, and B. Michel. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination system. PLoS Genet. 1: e15. https://doi.org/10.1371/journal.pgen.0010015
  28. Slade, D., A. B. Lindner, G. Paul, and M. Radman. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136: 1044-1055. https://doi.org/10.1016/j.cell.2009.01.018
  29. Tanaka, M., A. M. Earl, H. A. Howell, M. J. Park, J. A. Eisen, S. N. Peterson, and J. R. Battista. 2004. Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel protein that contributes to extreme radioresistance. Genetics 168: 21-33. https://doi.org/10.1534/genetics.104.029249
  30. Udupa, K. S., P. A. O'Cain, V. Mattimore, and J. R. Battista. 1994. Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans. J. Bacteriol. 24: 7439-7446.
  31. Venkateswaren, A., S. C. Mcfarlan, D. Ghosal, K. W. Minton, A. Vasilenko, K. S. Makarova, L. P. Wackett, and M. J. Daly. 2000. Physiologic determinants of radation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626. https://doi.org/10.1128/AEM.66.6.2620-2626.2000
  32. White, O., J. A. Eisen, J. F. Heideberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radioduran R1. Science 286: 1571-1577. https://doi.org/10.1126/science.286.5444.1571
  33. Wu, Y., W. Chen, Y. Zhao, H. Xu, and Y. Hua. 2009. Involvement of RecG in $H_{2}H_{2}$-induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 55: 841-848. https://doi.org/10.1139/W09-028
  34. Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngal, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15. https://doi.org/10.1093/nar/30.4.e15
  35. Zharadka, K., D. Slade, A. Balione, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lindner, and M. Radman. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443: 569-573.

Cited by

  1. Development of a Qualitative Dose Indicator for Gamma Radiation Using Lyophilized Deinococcus vol.22, pp.9, 2010, https://doi.org/10.4014/jmb.1202.02039
  2. Death by protein damage in irradiated cells vol.11, pp.1, 2012, https://doi.org/10.1016/j.dnarep.2011.10.024