Application of Geo-Statistic and Data-Mining for Determining Sampling Number and Interval for Monitoring Microbial Diversity in Tidal Mudflat

갯벌 미생물 다양성 모니터링 시료 채취 개수 및 간격 선정을 위한 지구통계학적 기법과 데이터 마이닝 적용 연구

  • Yang, Ji-Hoon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Jae-Jin (School of Civil and Environmental Engineering, Yonsei University) ;
  • Yoo, Keun-Je (School of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Joon-Hong (School of Civil and Environmental Engineering, Yonsei University)
  • 양지훈 (연세대학교 사회환경시스템공학부) ;
  • 이재진 (연세대학교 사회환경시스템공학부) ;
  • 유근제 (연세대학교 사회환경시스템공학부) ;
  • 박준홍 (연세대학교 사회환경시스템공학부)
  • Received : 2010.11.10
  • Accepted : 2010.12.16
  • Published : 2010.12.31

Abstract

Tidal mudflat is a reservoir for diverse microbial resources. Microbial diversity in tidal mudflat sediment can be easily influenced by various human activities. It is necessary to take representative samples to monitor microbial diversity in tidal mudflat sediments. In this study, we analyzed the microbial diversity and chemical characteristics of vegetation and non-vegetation tidal mudflat regions in the Kangwha tidal mudflat using geo-statistics and data-mining. According to the geo-statistical analysis, most correlation range values for the vegetation region were smaller than those for the non-vegetation region, which suggested that the shorter number and interval of sampling are required for the vegetation tidal mudflat environment due to its higher degree of chemical and biological complexity and heterogeneity. The data-mining analysis suggested that the organic content and nitrate were the major environmental factors influencing microbial diversity in the vegetation region while pH and sulfate were the major influencing factors in the non-vegetation region. Using the geo-statistical and data-mining integration approach, we proposed a guideline for determining the sampling interval and number to monitor microbial diversity in tidal mudflat.

갯벌 퇴적토는 미생물 다양성이 매우 높다고 알려져 있다. 하지만 인위적인 교란에 의해 갯벌 퇴적토 내 미생물 다양성이 달라질 수 있다. 지속적인 퇴적토 내 미생물 다양성 모니터링을 위해서는 대표성을 지닌 시료의 채취가 중요하다. 본 연구에서는 강화도 여차리 갯벌을 대상으로 식생이 있는 지역과 식생이 없는 지역의 미생물 다양성과 이화학적 특성치를 지구 통계학적으로 비교분석 하였다. 갯벌 시료에서 측정된 미생물 다양성과 다양한 이화학적 특성치를 지구통계학적으로 분석한 결과, 식생이 존재하는 지역에서의 상관거리가 식생이 존재하지 않는 지역에 비하여 대체로 짧다는 것을 알 수 있었다. 이는 식생이 존재하는 지역의 높은 생태학적 및 이화학적 복잡성과 이질성으로 인해 식생이 존재하는 지역에서는 식생이 존재하지 않는 지역에서 보다 비교적 좁은 간격으로 시료를 채취해야 한다는 것을 의미한다. 데이터 마이닝 기법을 사용하여 미생물 다양성에 영향을 주는 주요 환경영향 인자를 분석한 결과, 식생이 존재하는 지역에서는 유기물 함량과 질산염이온, 식생이 존재하지 않는 지역에서는 pH와 황산염이온이 미생물 다양성에 영향을 끼친다는 것을 알 수 있었다. 이러한 지구통계학 및 데이터 마이닝 분석 결과들을 활용해서 갯벌 퇴적토 내 미생물 다양성 측정을 위한 시료 채취 간격 및 개수 선정 지침을 본 연구에서 제안하였다.

Keywords

References

  1. 전승수, 우한준, 제종길, 신상호, 김종관, "갯벌총서 #1 우리나라 갯벌 -자연 생태의 특성," 해양수산부, 시그마프레스, 서울, pp. 6-11(2005).
  2. Kim, B., Oh, H., Kang, H., Park, S. and Chun, J., "Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis," Microb. Biotechnol., 14(1), 205-211(2004).
  3. Horowitz. N. H., "The Origins of Molecular Genetics- One Gene, One Enzyme," BioEssays, 3(1), 37-39(1985). https://doi.org/10.1002/bies.950030110
  4. Lee, J., Nishijima, W., Mukai, T., Takimoto, K., Seiki, T., Hiraoka, K. and Okada, M., "Factors to Determine the Functions and Structures in Natural and Constructed Tidal Flats," Water Res., 21(9), 2601-2606(1998).
  5. Kim, B., Oh, H., Kang, H. and Chun, J., "Archaeal Diversity in Tidal Flat Sediment as Revealed by 16S rDNA Analysis," J. Microbiol., 43(2), 144-151(2005).
  6. Stevens, H., Brinkhoff, T., Rink, B., Vollmers, J. and Simon, M., "Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem," Environ. Microbiol., 9(7), 1810-1822 (2007). https://doi.org/10.1111/j.1462-2920.2007.01302.x
  7. Haynes, K., Hofmann, T. A., Smith, C. J., Ball, A. S., Underwood, G. J. C. and Osborn, A. M., "Diatom-derived carbohydrates as drivers of bacterial community composition in estuarine sediments," Appl. Environ. Microbiol., ASM, On line published(2007).
  8. Wilms, R., Sass, H., Kopke, B., Koster, J., Cypionka, H. and Engelen, B., "Specific Bacterial, Archaeal, and Eukaryotic Communities in Tidal-Flat Sediments along a Vertical Profile of Several Meters," Appl. Environ. Microbiol., 72(4), 2756-2764(2006). https://doi.org/10.1128/AEM.72.4.2756-2764.2006
  9. Kim, B., Kim, B. K., Lee, J., Kim, M., Lim, Y. W. and Chun, J., "Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing," J. Microbiol., 46(4), 357-363(2008). https://doi.org/10.1007/s12275-008-0071-9
  10. Miletto, M., Loch, R., Antheunisse, A. M., Bodelier, P. L. E. and Laanbroek, H. J., "Response of the Sulfate-Reducing Community to the Re-establishment of Estuarine Conditions in Two Contrasting Soils : a Mesocosm Approach," Microb. Ecol., 59(1), 109-120(2010). https://doi.org/10.1007/s00248-009-9614-9
  11. 정승우, 안윤주, "토양위해성평가를 위한 합리적 토양조사 방안 연구," 한국지하수토양환경학회지, 12(1), 36-43(2007).
  12. Gibson, G. R., Bowman, M. L., Gerritsen, J. and Snyder, B. D., "Estuarine and Coastal Marine Water : Bioassessment and Biocriteria Technical Guidance," EPA 822-B-00-024, U.S. Environmental Protection Agency, Office of Water, Washington, DC, pp. 20-31(2000).
  13. Crosby, L. D. and Criddle, C. S., "Understanding Bias in Microbial Community Analysis Techniques due to rrn Operon Copy Number Heterogeneity," BioTechniques, 34(4), 2-9(2003).
  14. 최종근, 지구통계학. 시그마프레스, 서울, pp. 136-161(2007).
  15. Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., "Classification and regression trees," Chapman and Hall/CRC, U.S.A, pp. 10-37(1984).
  16. Mitchell, R. J., Hester, A. J., Campbell, C. D., Chapman, S. J., Cameron, C. M., Hewison, R. L., Potts, J. M., "Is vegetation composition or soil chemistry the best predictor of the soil microbial community?," Plant Soil, 333(1), 417-430(2010). https://doi.org/10.1007/s11104-010-0357-7
  17. Fierer, N. and Jackson, R. B., "The diversity and biogeography of soil bacterial communities," PNAS, 103(3), 626-631(2006). https://doi.org/10.1073/pnas.0507535103
  18. Grayston, S. J., Wang, S., Campbell, C. D. and Edwards, A. C., "Selective Influence of Plant Species On Microbial Diversity in the Rhizosphere," Soil Biol. Biochem., 30(3), 369-378(1998). https://doi.org/10.1016/S0038-0717(97)00124-7
  19. Torsvik, V. and Overas, L., "Microbial diversity and function in soil : from genes to ecosystems," Curr. Opin. Microbiol., 5(3), 240-245(2002).
  20. Shin, W. S., Pardue, J. H. and Jackson, A., "Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils," Water Res., 34(4), 1345-1353 (2000). https://doi.org/10.1016/S0043-1354(99)00267-5
  21. Sun, G. and Austin, D., "Completely autotrophic nitrogenremoval over nitrite in lab-scale constructed wetlands : evidence from a mass balance study," Chemosphere, 68(6), 1120-1128(2007). https://doi.org/10.1016/j.chemosphere.2007.01.060
  22. Kim, K. and Park, J., "A survey of applications of artificial intelligence algorithms in Eco-environmental modeling," Environ. Engineer. Res., 14(2), 102-110(2009). https://doi.org/10.4491/eer.2009.14.2.102
  23. Junkins, R., Kelaher, B. and Levinton, J., "Contributions of adult oligochaete emigration and immigration in a dynamic soft-sediment community," J. Exp. Mar. Biol. Ecol., 330(1), 208-220(2006). https://doi.org/10.1016/j.jembe.2005.12.028
  24. Rocha, C. and Cabbal, A. P., "The influence of tidal action on porewater nitrate concentration and dynamics in intertidal sediments of the Sado estuary," Estuaties and Coasts, 21(4A), 635-645(1998). https://doi.org/10.2307/1353301
  25. Ekschmitt, K. and Griffiths, B. S., "Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment," Appl. Soil Ecol., 10(3), 201-215(1998). https://doi.org/10.1016/S0929-1393(98)00119-X
  26. Pal, M. and Mather, P. M., "An assessment of the effectiveness of decision tree methods for land cover classification," Remote Sensing of Environ., 86(4), 554-565(2003). https://doi.org/10.1016/S0034-4257(03)00132-9
  27. 강현철, 한상태, 최종후, 이성건, 김은석, 엄익현, 김미경, "고객관계관리(CRM)를 위한 데이터마이닝 방법론," 자유아카데미, 경기, pp. 75-82(2006).
  28. 환경부고시 제 2001-202호 "토양환경평가 지침," 환경부, 대한민국, pp. 14(2001).
  29. Franklin, R. B. and Mills, A. L., "Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field," FEMS Microbiol. Ecol., 44(3), 335-346(2003). https://doi.org/10.1016/S0168-6496(03)00074-6
  30. Lide, D. R., CRC Handbook of Chemistry and Physics, 90st Edition, ed, CRC Press Inc., Boca Raton, FL, pp. 5-4(2009).
  31. 박노욱, 지광훈, 권병두, "지구통계학적 시뮬레이션을 이용한 원격탐사 화상 분류 결과의 공간적 불확실성 분포의 추정," 2004 GIS/RS 공동 춘계학술대회 논문집, 한국지형공간정보학회, 서울, pp. 463-468(2004).
  32. Shim, B. O., Chung, S. Y., Kang, D. H., Kim, G. B. and Park, H. Y., "Geostatistical Analysis for the Groundwater Database of the Youngsan and Sumjin River Basins," J. Engineer. Geol., 10(2), 131-142(2000).
  33. Berry, M. J. and Linoff, G. S., Data Mining Techniques, WILEY publishing Inc., Indiana, USA pp. 165-209(2004).