Distribution of Electrochemically Active Bacteria in the Sediment

Sediment에서의 전기활성 박테리아 분포 특성

  • 손형식 (부산대학교 미생물학과) ;
  • 손희종 (부산광역시 상수도사업본부) ;
  • 김미아 (부산대학교 미생물학과) ;
  • 이상준 (부산대학교 미생물학과)
  • Received : 2010.10.05
  • Accepted : 2010.12.16
  • Published : 2010.12.31

Abstract

Microbial fuel cells (MFC) were enriched using sediment Nakdong river, Hoidong river and protected water area in Gijang. The microbial community of sediment and enriched MFC was analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. ${\alpha}$-Proteobacteria, Acidobacter and Cyanobactia group were dominant in sediment by FISH. The coulombs of the final 10 peak of the 3 MFC (Nakdong, Hoidong, Gijang) were 0.64 C, 0.50 C, 0.61 C, respectively. When MFCs were enriched by sediment, ${\beta}$-, ${\gamma}$-Proteobacteria, Acidobacter and Firmicutes group increased 45~90%, 50~90%, 40~80% and 45~125%, respectively. In results of 16S rDNA sequencing, Roseomonas sp., Azospillium sp., Frateuria sp., Dyella sp., Enterobacter sp. and Deinocossus were isolated from Nakdong river and Azospillium sp., Delftia sp., Ralstonia sp., Klebsiella sp. and Deinococcus sp. were isolated from protected water area in Gijang and Pseudomonas sp., Klebsiella sp., Deinococcus sp., Leifsonia sp. and Bacillus sp. were isolated from Hoidong river.

낙동강, 회동 및 기장에서 채집한 sediment의 미생물 군집을 FISH 분석을 통하여 조사한 결과, ${\alpha}$ 그룹, Acidobacter 그룹 및 Cyanobacter 그룹의 분포비율이 가장 높았으며 전체적으로 서로 유사한 분포 특성을 나타내었다. 각각의 sediment를 접종한 MFC 농화배양 이후의 coulombic yield는 낙동강, 회동 및 기장의 경우 각각 0.64 C, 0.50 C, 0.61 C로 나타났으며, 농화배양 완료 후의 미생물 군집분포는 ${\beta}$-Proteobacteria, ${\gamma}$-Proteobacteria, Acidobacter 그룹 및 Firmicutes 그룹이 농화배양 전보다 각각 45~90%, 50~90%, 40~80% 및 45~125% 정도 생체량이 증가한 것으로 나타났다. 농화배양이 끝난 후 16S rDNA를 이용한 미생물 동정결과에서, 낙동강 sediment를 주입한 MFC의 경우는 ${\alpha}$-Proteobacteria의 속하는 Roseomonas sp., Azospillum sp.와 ${\gamma}$-Proteobacteria의 Frateuria sp., Dyella sp., Enterobacter sp.와 Deinococci 그룹의 Deinococcus sp.가 동정되었고, 기장 sediment는 ${\alpha}$-Proteobacteria의 Azospillum sp.와 ${\beta}$-Proteobacteria의 Delftia sp., Ralstonia sp.와 ${\gamma}$-Proteobacteria의 Klebsiella sp. 와 Deinococci 그룹의 Deinococcus sp.가 동정되었으며, 회동 sediment는 ${\gamma}$-Proteobacteria의 Pseudomonas sp., Klebsiella sp.와 Deinococci 그룹의 Deinococci sp.와 Actinobacteria 그룹의 Leifsonia sp.와 Bacilli 그룹의 Bacillus sp.가 동정되었다.

Keywords

References

  1. Park, D. H. and Zeikus, J. D., "Electricity generation in microbial fuel cells using neutral red as an electronophore," Appl. Environ. Microbiol., 66, 1292-1297(2000). https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  2. Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M. and Kim, B. H., "A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens," Enzyme. Microb. Technol., 30, 145-152(2002). https://doi.org/10.1016/S0141-0229(01)00478-1
  3. Kim, T. S. and Kim, B. H., "Modulation of Clostridium acetobutylicum fermantation by electrochemically supplied reducing equivalent," Biotechnol. Lett., 10, 123-128(1998).
  4. McKinlay, J. B. and Zeikus, J. G., "Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli.," Appl. Environ. Microbiol., 70, 3467-3474 (2004). https://doi.org/10.1128/AEM.70.6.3467-3474.2004
  5. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim. M., Chang, I. S., Park, Y. K. and Chang H. I., "A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a bacterial fuel cell," Anaerobe, 7, 297-306(2001). https://doi.org/10.1006/anae.2001.0399
  6. Kim, G. T., Hyun, M. S., Chang, I. S., Kim, H. J., Park, H. S., Kim, B. H., Kim, S. M. and Wimpenny, J. W. T., "Dissimilatory Fe(III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil," J. Appl. Microbiol., 99, 978-987(2005). https://doi.org/10.1111/j.1365-2672.2004.02514.x
  7. Chaudhuri, S. K. and Lovley, D. R. "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat. Biotechnol., 21, 1229-1232(2003). https://doi.org/10.1038/nbt867
  8. Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J. P., Gorby, Y. A. and Goodwin, S., "Geobacter metallireducens gen. nov. sp. now., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron, and other metals," Arch. Microbiol., 159, 336-344(1993). https://doi.org/10.1007/BF00290916
  9. Caccavo, F., Coates, J. D., Rossello-Mora, R. A., Ludwig, W., Schleifer, K. H., Lovley, D. R. and McInerney, M. J. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium," Arch. Microbiol., 165, 370-376(1996). https://doi.org/10.1007/s002030050340
  10. Bond, D. R., Holmes, D. E., Tender, L. M. and Lovley, D. R. "Electrode-reducing microorganisms that harvest energy from marine sediments," Science, 295, 483-485(2002). https://doi.org/10.1126/science.1066771
  11. Lovley, D. R., Phillips, E. J. P. and Lonergan, D. J. "Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens," Appl. Environ. Microbiol., 55, 700-706(1989).
  12. Lovley, D. R., Caccavo, F. and Phillips, E. J. P., "Acetate oxidation by dissimilatory Fe(III) reducers," Appl. Environ. Microbiol., 58, 3205-3206(1992).
  13. Tebo, B. M. and Obraztsova, A. Y. "Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors," FEMS Microbiol. Lett., 162, 193-198 (1998). https://doi.org/10.1111/j.1574-6968.1998.tb12998.x
  14. Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. and Phung, T. N., "Enrichment of microbial community generating electrocity using a fuel cell type electrochemical cell," Appl. Microbiol. Biotechnol., 63, 672-681 (2004). https://doi.org/10.1007/s00253-003-1412-6
  15. Wagner, M., Amann, R., Lemmer, H. and Scheleifer, K., "Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure," Appl. Environ. Microbiol., 59(5), 1520-1525(1993).
  16. Glockner, F. O., Fuchs, B. M. and Amann, R., "Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization," Appl. Environ. Microbiol., 65(8), 3721-3726(1999).
  17. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D. and Schleifer, K. H., "Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge," Appl. Environ. Microbial., 60(3), 792-800 (1994).
  18. Neef, A., Amann, R., Schlesner, H. and Scheleifer, K., "Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes," Microbiol., 144, 3257-3266(1998). https://doi.org/10.1099/00221287-144-12-3257
  19. Juretschko, S., Loy, A., Lehner, A. and Wagner, M., "The Microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach," Syst. Appl. Microbiol., 25, 84-99(2002). https://doi.org/10.1078/0723-2020-00093
  20. Nubel, U., Garcia-Pichel, F. and Muyzer, G., "PCR primers to amplify 16S rRNA genes from cyanobacteria," Appl. Environ. Microbiol., 63, 3327-3332(1997).
  21. Manz, W., Eisenbrecher, M., Neu, T. R. and Szewzyk, U., "Abundance and spatial organization of gram-negative sulfate- reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides," FEMS Microbiol. Ecol., 25, 43-61(1998). https://doi.org/10.1111/j.1574-6941.1998.tb00459.x
  22. Meier, H., Amann, R., Ludwig, W. and Schleifer, K. H., "Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content," Syst. Appl. Microbiol., 22, 186-196(1999). https://doi.org/10.1016/S0723-2020(99)80065-4
  23. Rusch, A., Huettel, M., Reimers, C. E., Taghon, G. L. and Fuller, C. M., "Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands," FEMS Microbiol. Ecol., 44, 89-100(2003). https://doi.org/10.1111/j.1574-6941.2003.tb01093.x
  24. Wobus, A., Bleul, C., Maassen, S., Scheerer, C., Schuppler, M., Jacobs, E. and Rӧske, I., "Microbial diversity and functional characterization of sediments from reservoirs of different trophic state," FEMS Microbiol. Ecol., 46, 331-347 (2003). https://doi.org/10.1016/S0168-6496(03)00249-6