• 제목/요약/키워드: Microbial Community(MFC)

Search Result 9, Processing Time 0.022 seconds

Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates (미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교)

  • Yu, Jaecheul;Cho, Haein;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

Distribution of Electrochemically Active Bacteria in Activated Sludge Characteristics (활성슬러지내의 전기화학적활성 박테리아 분포 특성)

  • Son, Hyeng-Sik;Son, Hee-Jong;Kim, Mi-A;Lee, Sang-Joon
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.407-411
    • /
    • 2011
  • Microbial fuel cell (MFC) wes enriched using sludge in wastewater treatment. The microbial community of activated sludge and enriched MFC were analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. Bacteroidetes group were pre-dominant in activated sludge by FISH. ${\alpha}$ group, ${\gamma}$ group and Acintobacter group were dominant and they were similar to distribution. The average value of 10 peak of MFC is 0.44C. When MFC wase enriched by sludge, ${\gamma}$-Proteobacteria, Plantomycetes group increased 70% and 60%, respectively. In results of 16S rDNA sequencing, Sphiringomonas sp. was comprised in ${\alpha}$ proteobacteria and Enterobacter sp., Klebsiella sp., Acinetobacter sp., Bacillus sp. were comprised in ${\gamma}$ proteobacteria and Chryseobacterium sp. was comprised in Flavobacteria were isolated from sludge.

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.

Electricity Generation and Microbial Community Structure Variation Depending on Separator Types and Cathode Characteristics in Air-cathode MFC (공기환원전극 미생물연료전지에서 분리막 종류 및 환원전극 특성에 따른 전기발생 및 미생물 군집구조 변화)

  • Yu, Jae-Cheul;Lee, Chang-Yeol;Kim, Sun-Ah;Cho, Hae-In;Cho, Sun-Ja;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2010
  • Air-cathode microbial fuel cell consisted of 4 unit cells were operated under batch condition and electricity generation and microbial community structure variation were investigated, depending on separator types and cathode characteristics: A) PEM(Proton Exchange Membrane)-30% Wet proofing Carbon Cloth(WC), B) AEM(Anion Exchange Membrane-WC, C) CEM(Cation Exchange Membrane)-WC, D) PEM-No Wet proofing Carbon Cloth(NC). Maximum power densities of PEM-WC, AEM-WC and CEM-WC were 510.9, 522.1 and 504.8 $mW/m^2$, respectively. But PEM-NC showed relatively lower maximum power density of 218.3 $mW/m^2$. And PEM-WC, AEM-WC and CEM-WC showed similar internal resistances(20.0-28.2 ${\Omega}$). PCRDGGE, PCA and diversity indices showed that uncultured bacteria which reported in previous MFC studies were detected in suspended growth bacteria and attached growth bacteria would be affected not by separator type but by cathode characteristic. Thus, cathode characteristic can be one of the critical factors for power generation in air-cathode MFC using PEM, AEM, and CEM as separator.

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation

  • Kim, In-S.;Chae, Kyu-Jung;Choi, Mi-Jin;Verstraete, Willy
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.51-65
    • /
    • 2008
  • The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.

Distribution of Electrochemically Active Bacteria in the Sediment (Sediment에서의 전기활성 박테리아 분포 특성)

  • Son, Hyeng-Sik;Son, Hee-Jong;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1094-1101
    • /
    • 2010
  • Microbial fuel cells (MFC) were enriched using sediment Nakdong river, Hoidong river and protected water area in Gijang. The microbial community of sediment and enriched MFC was analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. ${\alpha}$-Proteobacteria, Acidobacter and Cyanobactia group were dominant in sediment by FISH. The coulombs of the final 10 peak of the 3 MFC (Nakdong, Hoidong, Gijang) were 0.64 C, 0.50 C, 0.61 C, respectively. When MFCs were enriched by sediment, ${\beta}$-, ${\gamma}$-Proteobacteria, Acidobacter and Firmicutes group increased 45~90%, 50~90%, 40~80% and 45~125%, respectively. In results of 16S rDNA sequencing, Roseomonas sp., Azospillium sp., Frateuria sp., Dyella sp., Enterobacter sp. and Deinocossus were isolated from Nakdong river and Azospillium sp., Delftia sp., Ralstonia sp., Klebsiella sp. and Deinococcus sp. were isolated from protected water area in Gijang and Pseudomonas sp., Klebsiella sp., Deinococcus sp., Leifsonia sp. and Bacillus sp. were isolated from Hoidong river.

Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate

  • Choo Yeng-Fung;Lee Ji-Young;Chang In-Seop;Kim Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1481-1484
    • /
    • 2006
  • In this study, glucose and glutamate (copiotrophic conditions) were used to enrich electrochemically active bacteria (EAB) in a microbial fuel cell (MFC). The enriched population consisted primarily of ${\gamma}$-Proteobacteria (36.5%), followed by Firmicutes (27%) and O-Proteobacteria (15%). Accordingly, we compared our own enrichments done under many different conditions with those reported from the literature, all of which support the notion that electrochemically active bacteria are taxonomically very diverse. Enrichments with different types and levels of energy sources (fuels) have clearly yielded many different groups of bacteria.

Phylogenetic Diversity of Dominant Bacterial and Archaeal Communities in Plant-Microbial Fuel Cells Using Rice Plants

  • Ahn, Jae-Hyung;Jeong, Woo-Suk;Choi, Min-Young;Kim, Byung-Yong;Song, Jaekyeong;Weon, Hang-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1707-1718
    • /
    • 2014
  • In this study, the phylogenetic diversities of bacterial and archaeal communities in a plant-microbial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

Microbial Communities of the Microbial Fuel Cell Using Swine Wastewater in the Enrichment Step with the Lapse of Time (가축분뇨를 이용한 미생물연료전지의 농화배양 단계에서 미생물 군집 변화)

  • Jang, Jae Kyung;Hong, Sun Hwa;Ryou, Youg Sun;Lee, Eun Young;Chang, In Seop;Kang, Young Koo;Kim, Jong Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.973-977
    • /
    • 2013
  • These studies were attempted to investigate the change of microbial community of anode of microbial fuel cell using swine wastewater in the enrichment step with the lapse of time. Microbial fuel cells enriched by a 1 : 1 mixture of anaerobic digestive juices of the sewage treatment plant and livestock wastewater. Enrichment culture step was divided into three stages to indentify the microorganisms. It was separated by each lag phase, exponential phase, and stationary phase. These steps were determined by the change of the current value. The current after enrichment was generated about $0.84{\pm}0.06mA$. We were cut out the different 17 bands in the DGGE fingerprint gel to do sequencing. The bands which the concentration was increasing or newly appearing with the lapse of time were included for this study. In the lag and exponential phase, Clostridium, Rhodocyclaceae, Bacteriodetes, and Uncultured bacterium etc. were detected. There were in the stationary phase Geobacter sp., Rhodocyclaceae, Candidatus, Nitrospira, Flavobactriaceae and uncultured bacterium etc. Geobactor among microorganisms detected in this study is known as the Electrochemically active microorganisms. It may include electrochemically active microorganisms to be considered as electrical activity microorganisms.