A Study on the Oxidative Transformation of Quinone Compound using Nanostructured Black-birnessite

나노구조의 블랙-버네사이트를 이용한 퀴논계 화합물의 산화-변환 연구

  • Harn, Yoon-I (Department of energy, The graduate school of Energy and Environment, Seoul National University of Technology) ;
  • Choi, Chan-Kyu (Department of energy, The graduate school of Energy and Environment, Seoul National University of Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 한윤이 (서울산업대학교 에너지환경대학원 에너지환경공학과) ;
  • 최찬규 (서울산업대학교 에너지환경대학원 에너지환경공학과) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Received : 2010.02.08
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

In this study, new manganese oxide (i.e., black-birnessite) particles with nanostructures were prepared and its physico-chemical properties and oxidative-transformation efficiency on 1,4-naphthoquinine(1,4-NPQ) in the presence of reactive mediator was investigated. The results were also compared with that of the manganese oxide (i.e., brown-birnessite) particles synthesized by classical McKenzie method. Analysis of XRD and SEM data show that the particles are a single phase corresponding to a birnessite-based manganese oxide with cotton ball-like shapes containing nanofibers. In batch experiments, removals of 1,4-NPQ by the black-birnessite follows pseudo-first-order kinetics and the rate constant values obtained are greater about 2.3 times than that of the brown-birnessite in spite of its lower surface area (41.0 vs 19.80 $m^2/g$). The results can be explained by the higher crystallinity and nano structured features of the back-birnessite particles, which give higher reactivity for the removals of the quinone compound. HPLC analysis of the reaction products confirmed that the balck-birnessites removed 1,4-NPQ through cross-coupling reaction in the presence of catechol as a reactive mediator.

본 연구에서는 나노구조의 새로운 망간산화물 입자(즉, 블랙-버네사이트)를 합성하여 물질특성 및 1,4-naphthoquinone (1,4-NPQ)을 대상으로 반응매개체 존재 하에서의 산화-변환반응 효율을 조사하였고, 그 결과를 기존의 McKenzie 방법으로 얻은 망간산화물(즉, 브라운-버네사이트)의 결과와 비교 분석하였다. XRD 분석 결과 합성한 망간산화물 입자의 결정상은 버네사이트(${\delta}-MnO_2$)임을 확인하였으며, SEM 측정결과 입자표면은 섬유상의 구조에 의한 나노크기의 미세기공을 가진 볼모양(ball-like)의 형태를 보였다. 배치실험 결과, 나노구조의 망간산화물에 의한 1,4-NPQ 제거는 유사-1차 반응을 따랐으며 기존 망간산화물과 비교해 BET 비표면적 값이 작음(41.05 vs 19.80 $m^2/g$)에도 불구하고 약 2.3배의 높은 속도 상수값을 보였다. 이러한 결과는 블랙-버네사이트에서의 상대적으로 높은 결정성과 나노구조의 표면 특성에 기인한 것으로 해석되며, 블랙-버네사이트 입자가 퀴논화합물에 대하여 상대적으로 높은 반응성을 보임을 알 수 있다. 반응산물에 대한 HPLC 크로마토그램 분석 결과로부터 블랙 버네사이트 입자에 의한 1,4-NPQ의 제거는 반응 매개체인 catechol 존재 하에서의 상호-결합반응을 통한 중합체 생성을 통해 제거됨을 확인하였다.

Keywords

References

  1. Bollag J. M., Myers C., Pal S. and Huang P. M. "The role of abiotic and biotic catalysts in the transformation of phenol compounds", In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310 (1995).
  2. Shindo, H. and Huang, P. M., "Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural Environment," Nature (London), 308, 57-58 (1984). https://doi.org/10.1038/308057a0
  3. Shindo, H. and Huang, P. M., "Role of Mn(IV) oxide in abiotic formation of humic substances in the environment," Nature (London), 298, 363-365 (1982). https://doi.org/10.1038/298363a0
  4. Bollag, J. M., "Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds", Environ. Sci. Technol., 26, 1876-1881 (1992). https://doi.org/10.1021/es00034a002
  5. Dec, J., Shuttleworth, K. L., and Bollag, J.-M., "Microbial release of 2,4-dichlorophenol bound to humic acid or incorporated during humification", J. Environ. Qual., 19(3), 546-551 (1990).
  6. Kang, K. H., Dec, J., Park, H., and Bollag, J.-M., "Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite," Water Res., 38(11), 2737-2745 (2004). https://doi.org/10.1016/j.watres.2004.03.018
  7. Kang, K. H., Lee, D. H., Im, D. M. and Shin, H. S., "Reaction kinetics and transformation products of 1-naphthol by Mn oxide-mediated oxidative coupling reaction", J. Hazard. Materi., 165, 540-547 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.027
  8. Weber, Jr., W. J. and Huang, Q, "Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling", Environ. Sci. Technol., 37, 4221-4227 (2003). https://doi.org/10.1021/es030330u
  9. McKenzie, R. M., "The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese", Miner. Mag., 38, 493-502 (1971). https://doi.org/10.1180/minmag.1971.038.296.12
  10. Cheney, M. A., Bhowmik, P. K., Qian, S., Joo, S. W., Hou, W. and Okoh, J. M., "A New method of synthesizing black birnessite nanoparticles: From brown to black birnessite with nanostructure", Journal of Nanomaterials., Volume 2008, Article ID 763706, doi:10.1155/2008/763706.
  11. Stephanie, L. B., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H. and Suib, S. L., "A Review of porous manganses oxide materials", Chem. Mater., 10, 2619-2628 (1998) https://doi.org/10.1021/cm980227h
  12. Feng, Q., Kanoh, H. and Ooi, K., "Manganese oxide porous crystals", J. Mater. Chem., 9, 319-333 (1999). https://doi.org/10.1039/a805369c
  13. Zhang, Q. H., Li, S. P., Sun, S. Y., Yin, X. S. and Yu, J. G., "Lithium selective adsorption on 1-D MnO2 anaostruture ion-sieve", Adv. Powder Tech., 20, 432-437 (2009). https://doi.org/10.1016/j.apt.2009.02.008
  14. Beaudrout, E., Salle, A. and Guyomard, D., "Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials", Electrochim. Acta, 54, 1240-1248 (2009). https://doi.org/10.1016/j.electacta.2008.08.072
  15. 임동민, 이두희, 강기훈, 신현상, "망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구", 대한환경공학회지, 29(9), 989-996 (2007).
  16. Leenheer, J. A.,. McKnight, D. M., Thurman, E. M. and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interaction, Properties and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado (1989).
  17. Blalk, H. M., Simpson, A. J. and Pedersen, J. A., "Cross-coupling of sulfamide antimicrobial agents with model humic constituents" Environ. Sci. Technol., 39, 4463-4473 (2005). https://doi.org/10.1021/es0500916
  18. Julien, C. M., Massot, M. and Poinsignon, C., "Lattice vibrations of manganese oxides; Part 1. Periodic structure", Spectrochim. Acta Part A., 60, 689-700 (2004). https://doi.org/10.1016/S1386-1425(03)00279-8
  19. Cheney, M. A,, Bhowmik, P. K., Moriuchi, S., Villaobos, M., Moriuchi, S. and Joo, S. W. "The effect of stirring on the morphology of birnessite nanoparticles", Journal of Nanomaterials., Volume 2008, Article ID 168716, 9 pages, doi:10.1155/2008/7168716.
  20. Lundstedt. S., "Analysis of PAHs and their transformation products in contaminated soil and remedial processes", Ph. D thesis, 2003, Umea Univ., Sewden.
  21. Lundstedt. S. Persson, Y. and Oberg, L., "Transformation of PAHs during ethanol-Fenton treatment of an aged gaswork's soil", Chemosphere, 65, 1288-1294 (2006). https://doi.org/10.1016/j.chemosphere.2006.04.031
  22. Agrawal, A. and Tratnua, P. G., "Reduction of nitro aromatic compounds by zero-valent iron metal", Environ. Sci. Technol., 30, 153-160 (1996). https://doi.org/10.1021/es950211h
  23. Kang, K. H., Lim, D. M. and Shin, H. S., "Removal of TNT reduction products via oxidative-coupling reaction using manganese oxide", Water Res., 40(5), 903-910 (2006). https://doi.org/10.1016/j.watres.2005.12.036