• Title/Summary/Keyword: 1,4-NPQ

Search Result 12, Processing Time 0.023 seconds

A Study on the Oxidative Transformation of Quinone Compound using Nanostructured Black-birnessite (나노구조의 블랙-버네사이트를 이용한 퀴논계 화합물의 산화-변환 연구)

  • Harn, Yoon-I;Choi, Chan-Kyu;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.547-554
    • /
    • 2010
  • In this study, new manganese oxide (i.e., black-birnessite) particles with nanostructures were prepared and its physico-chemical properties and oxidative-transformation efficiency on 1,4-naphthoquinine(1,4-NPQ) in the presence of reactive mediator was investigated. The results were also compared with that of the manganese oxide (i.e., brown-birnessite) particles synthesized by classical McKenzie method. Analysis of XRD and SEM data show that the particles are a single phase corresponding to a birnessite-based manganese oxide with cotton ball-like shapes containing nanofibers. In batch experiments, removals of 1,4-NPQ by the black-birnessite follows pseudo-first-order kinetics and the rate constant values obtained are greater about 2.3 times than that of the brown-birnessite in spite of its lower surface area (41.0 vs 19.80 $m^2/g$). The results can be explained by the higher crystallinity and nano structured features of the back-birnessite particles, which give higher reactivity for the removals of the quinone compound. HPLC analysis of the reaction products confirmed that the balck-birnessites removed 1,4-NPQ through cross-coupling reaction in the presence of catechol as a reactive mediator.

Removals of PAH-quinones Using Birnessite-Mediated Oxidative-Transformation Processes (망간산화물(Birnessite)을 매개로한 산화-변환반응을 이용한 PAH-퀴논화합물의 제거)

  • Choi, Chan-Kyu;Harn, Yoon-I;Kim, Seong-Uk;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.396-404
    • /
    • 2011
  • An investigation on the removals of PAH-quinone compounds, which are commonly produced from the biological and/or chemical treatments of PAH-contaminated soils, from the aqueous phase via birnessite (${\delta}-MnO_2$)-mediated oxidative transformation is described. It was demonstrated that acenaphthenequinone (APQ), p-PAH quinone can be removed via birnessite-mediated oxidative-coupling reactions, and anthraquinone (AQ) and 1,4-naphthoquinone (1,4-NPQ), o-PAH quinones were efficiently removed by birnessite-mediated cross-coupling reactions in the presence of catechol (CAT) as a reactive mediator. The removals of PAH-quinone compounds followed pseudo-first-order reactions, and the rate constant (k, $hr^{-1}$) for the removals of 1,4-NPQ under the experiment conditions (1,4-NPQ = 10 mg/L, CAT = 50 mg/L, ${\delta}-MnO_2$ = 1.0 g/L, pH 5, Reaction time = 6~96 hr) was 0.0426, which was about 4 times lower than that of APQ (0.173). With the observed pseudo-first order rate constants with respect to birnessite loadings under the same experimental conditions, the surface-normalized specific rate constant, $K_{surf}$, for 1,4-NPQ was determined to be $8.5{\times}10^{-4}L/m^2{\cdot}hr$. The analysis of the kinetic data with respect to birnessite loading indicated that the cross-coupling reactions of 1,4-NPQ consist of two different reaction steps over time and the results have also been discussed in terms of the reaction mechanisms.

Photodynamic Stress-Induced Nonenzymatic Antioxidant Responses in Transgenic Rice Overexpressing 5-Aminolevulinic Acid Synthase (5-Aminolevulinic Acid Synthase를 과발현하는 형질전환 벼에서 광역학적 스트레스가 유도하는 비효소적 항산화반응)

  • Jung, Sun-Yo
    • Korean Journal of Weed Science
    • /
    • v.31 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • We investigated photodynamic stress-induced antioxidant responses in transgenic rice overexpressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S) coding sequence lacking plastidal transit sequence. High light of $350{\mu}mol\;m^{-2}\;s^{-1}$ decreased the quantum yield in the transgenic lines, C4 and C5, compared to that of wild-type line. By contrast, non-photochemical quenching (NPQ) levels of C4 and C5 under high light were higher than those of the transgenic lines under low light of $150{\mu}mol\;m^{-2}\;s^{-1}$ as well as wild-type line under low and high light. Greater levels of NPQ in the transgenic lines exposed to high light were in a close correlation with increases in the xanthophyll pigment, zeaxanthin. Under high light, levels of neoxanthin, violaxanthin, lutein, and ${\beta}$-carotene in the transgenic lines were lower than those in wild-type line. Taken together, nonphotochemical energy dissipation and photoprotectant xanthophyll pigments play a critical role to deal with the severe photodynamic damage in the transgenic rice plants, although they could not overcome the photodynamic stress, leading to severe photobleaching symptoms.

Investigation on Reaction Products From Oxidative Coupling Reactions of 1-Naphthol By Manganese Oxide (망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구)

  • Lim, Dong-Min;Lee, Doo-Hee;Kang, Ki-Hoon;Shin, Hyun-Snag
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.989-996
    • /
    • 2007
  • In this study, abiotic transformation of 1-naphthol(1-NP) via oxidative-coupling reaction and its reaction products were investigated in the presence of Mn oxides. The reaction products were characterized for their relative polarity using solvent extraction experiment and reverse-phase HPLC, and for structure using CCMS and LC/MS, and for absorption characteristics using UV-Vis spectrometry. The reaction products present in aqueous phase were more polar than parent naphthol and comprised of 1,4-naphthoquinon(1,4-NPQ) and oligomers such as dimers and trimers. Hydrophilic component present in water phase after solvent$(CH_2Cl_2)$ extractions was identified as naphthol polymerized products having molecular weight(m/z) ranging from 400 to 2,000, and showed similar UV-Vis. absorption characteristics to that of foil fulvic acid. Transformation of 1,4-NPQ, which is non-reactive to Mn oxide, to the polymerized products via cross-coupling reaction in the presence of 1-NP was also verified. In this experimental conditions(20.5 mg/L, 1-NP, 2.5 g/L $MnO_2$, pH 5), the transformation of 1-NP into the oligomers and polymerized products were about 83% of initial 1-NP concentrations, and more than 30% of the reaction products was estimated to be water insoluble fractions, not extracted by $H_2O$ methanol. Results from this study suggest that Mn oxide-mediated treatment of naphthol contaminated soils can achieve risk reduction through the formation of oligomers md polymer precipitation.

Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves (자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화)

  • Lee, Hae-Youn;Park, Youn-Il;Hong, Young-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.

Photosynthetic Responses to Dehydration in Green Pepper(Capsicum annuum L.)Leaves

  • Lee, Hae-Yeon;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.169-174
    • /
    • 1998
  • Photosynthetic responses to dehydration were examined by the simulataneous measurement of O2 evolution and chlorophyll (Chl) fluorescence in green pepper leaves. Dehydration was induced by immersing the plant roots directly in the Hoagland solution containing varying concentration (2-30%) of polyethylene glycol(PEG-6000) . Water potential of the leaf was decreased time-and concentation -dependently by PEG-treatment. The decrease in water potential of leaf was correlated with the decrease in both the maximal photosynthesis (Pmax) and quantum yield of O2 evolution, but Pmax dropped more rapidly than quantum yield at all water deficit conditions tested. However, Chl fluorescence parameters were not affected much. Dehydration did not change the initial fluorescence (Fo) and maximum photochemical efficiency(Fv/Fm) of photosystem(PS) II. Both the photochemical quenching (qP) and non-photochemical quenching(NPQ) were not changed by dehydration under low PFR(50 $\mu$mols m-2s-1 ). In contrast, under high PFR(270$\mu$mols m-2s-1)qP was slightly decreased while NPQ was greatly increased. The fast induction kinetics of Chl fluroecence showed no change in Chl fluorescence pattern by dehydration at high PFR (640 $\mu$mols m-2s-1 ), but exhibited a significant drop in peak level(Fp)at low PRFR (70$\mu$mols m-2s-1 ). PS I oxidation and reduction kinetics revealed normal reduction but delayed oxidation to P-700+, suggesting no lesionin electron flow from PSII to PSI , but impaired electron transport to NADP+,These results suggest that water stress caused by PEG-treatment results in the reduction of photosynthesis, promarily due to the reducted electron trasport from PSI to NADP+ or hampered subsequent steps involving Calvin Cycle.

  • PDF

Effects of Low Dose γ-Radiation on Photosynthesis of Red Pepper (Capsicum annuum L.) and the Reduction of Photoinhibition (저선량 γ선 조사가 고추의 광합성과 광 스트레스 경감에 미치는 효과)

  • Lee, Hae-Youn;Baek, Myung-Hwa;Park, Soon-Chul;Park, Youn-Il;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • The effect of low dose $\gamma$ radiation on photosynthesis and the reduction of photoinhibition in red pepper plant was investigated. The seedling height leaf width and leaf length of pepper were stimulated in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than in the control. To investigate the effect of low dose $\gamma$ radiation on response to high light stress, photoinhibition was induced in leaves of pepper by illumination of high light (900 $\mu mol/m^2/s$). Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, was decreased with increasing illumination time by 50% after 4 hours while Fo did not change. However, Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the photoinhibition was decreased by the low dose $\gamma$ radiation. Changes in the effective quantum yield of PSII, $\Phi_{PSII}$, and 1/Fo-1/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Fm. And NPQ was decreased after photoinhibitory treatment showing no difference between the control and the 4 Gy irradiation group. These results showed the positive effect of low dose $\gamma$ radiation on the seedling growth and the reduction of photoinhibition.

Effects of Low Dose $\gamma$-Radiation on the Growth, Activities of Enzymes and Photosynthetic Activities of Gourd (Lagenaria siceraria) (저선량 $\gamma$선 조사가 참박의 초기 생육과 효소 활성 및 광합성 능에 미치는 영향)

  • 이혜연;김재성;백명화;이영근;임돈순
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • Gourd seeds were irradiated with the doses of 0-20 Gy to investigate the effect of the low dose $\gamma$-radiation on the early growth and physiological activity. The stimulating effects of the low dose y- radiation on the early growth were not noticeably high, but were increased generally at 4-16 Gy irradiation group. The catalase and peroxidase activity of cotyledon from seeds irradiated with $\gamma$- radiation were increased at 8 Gy irradiation group. The photochemical activity of leaf was noticeably high at 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, decreased with increasing illumination time by 50% after 4 hrs in the control and 8 Gy irradiation group, while Fo slightly increased. However, Fv/Em in the 4 Gy irradiation group decreased by 40% of inhibition, indicating that photoinhibition decreased by the low dose $\gamma$- radiation. Changes in the effective quantum yield of PSII, $\varphi_{PSII}$ and 1/Fo- l/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Em. NPQ decreased by 70% after photoinhibitory treatment with showing similar pattern between the control and the irradiation group. These results showed the positive effect of low dose $\gamma$- radiation on the seedling growth and the reduction of photoinhibition in the 4 Gy irradiation group.

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

The Effects of Thoracic Spine Self-mobilization Exercise Using a Tool on Pain, Range of Motion, and Dysfunction of Chronic Neck Pain Patients (소도구를 이용한 등뼈 자가 관절 가동성 운동이 만성 목통증 환자의 통증, 관절가동범위, 기능장애에 미치는 영향)

  • Kim, Su-jin;Kim, Suhn-yeop;Lee, Min-ji
    • Physical Therapy Korea
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Background: Thoracic spine self-mobilization exercise is commonly used to manage patients with neck pain. However, no previous studies have investigated the effects of thoracic spine self-mobilization exercise alone in patients with chronic neck pain. Objects: The purpose of this study was to investigate the effects of thoracic self-mobilization using a tool on cervical range of motion (ROM), disability level, upper body posture, pain and fear-avoidance beliefs questionnaire (FABQ) in patients with chronic neck pain. Methods: The subjects were 49 patients (21 males, 28 females) with chronic neck pain. The subjects were randomly divided into an experimental group (EG, n = 23) and control group (CG, n = 26). For the EG, thoracic self-mobilization was applied. We placed a tool (made with 2 tennis balls) under 3 different vertebral levels (T1-4, T5-8, T9-12) of the thoracic spine and the subjects performed crunches, which included thoracic flexion and extension in supine position. Five times × 3 sets for each levels, twice a week, for 4 weeks. Cervical pain, disability, upper body posture, FABQ results, and ROM were evaluated at baseline, after 4 weeks of intervention, and at 8 weeks of follow-up. Assessments included the quadruple visual analogue scale (QVAS); Northwick Park neck pain questionnaire (NPQ); craniovertebral angles (CVA), forward shoulder angle (FSA) and kyphosis angle (KA) measurements for upper body posture; FABQ and cervical ROM testing. Results: The EG showed a statistically significant improvement after intervention in the QVAS (-51.16%); NPQ (-53.46%); flexion (20.95%), extension (25.32%), left rotation (14.04%), and right rotation (25.32%) in the ROM of the cervical joint; KA (-7.14%); CVA (9.82%); and FSA (-4.12%). Conclusion: These results suggest that, for patients with chronic neck pain, thoracic self-mobilization exercise using a tool (tennis balls) is effective to improve neck pain, disability level, the ROM, and upper body posture.