A New Methodology of Measuring Water Toxicity using Sulfur Oxidizing Bacteria

황산화미생물을 이용한 새로운 수(水)중 생태독성탐지 방법

  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
  • 오상은 (강원대학교 바이오자원환경학과)
  • Received : 2010.05.14
  • Accepted : 2010.06.04
  • Published : 2010.06.30

Abstract

For the rapid and reliable detection of toxic compounds in water, a novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid in the presence of oxygen. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. Using a synthetic stream water (EC=0.12 mS/cm and pH=7.2), the baseline steady-state EC and pH values were 0.5~1.2 mS/cm and ~2.5 over 7 days of testing at HRT 30 minutes. When nitrite compounds were added to the system, the effluent EC decreased and the pH increased due to the inhibition of the SOB. Optimum HRT was 30 min and this HRT could be decresed by using smaller sulfur particles.

수중의 독성을 탐지하기 위하여 황산화미생물을 이용한 새로운 형태의 생태독성탐지 방법이 연구되었다. 황산화미생물이 산소 존재 하에서 황입자를 산화하여 황산을 만들게 되고 이는 EC의 증가 및 pH의 감소를 가져온다. 독성물질이 들어오면 미생물의 저해로 황산을 적게 만들게 되므로 EC의 증가 정도가 감소하게 된다. 인공하천수(EC= 0.12 mS/cm and pH=7.2)를 이용하여 황산화미생물을 배양하고 반응조를 HRT 30분으로 연속 운전한 결과 유출 인공하천수의 EC=0.5~1.2 mS/cm, pH= ~2.5이었으며 7일 동안 일정하게 유지되었다. 이러한 유입수와 유출수의 EC의 차이는 인공하천수가 독성이 없는 조건에서 일정 속도로 황산을 만들었기 때문이다. 아질산성질소 2 mg/L를 함유한 인공하천수를 넣은 결과 인공하천수 주입 후 1.5시간 경과 후 EC 값이 급격하게 감소하고 pH 값은 상승하여 독성을 쉽게 탐지 가능하였다. 최적의 체류시간은 30분이었으며 이는 황입자의 크기를 줄임으로써 더 짧은 체류시간에서 운전이 가능할 것으로 판단된다.

Keywords

References

  1. Rogers, K. R., Wiliams, L. R., "Biosensors for environmental monitoring: a regulatory perspective," Trends in Analytical Chemistry, 14(7) 289-294(1995).
  2. Eilersen, A.M., Arvin, E., and Henze, M., "Monitoring toxicity of industrial wastewater and specific chemicals to a green alga, nitrifying bacteria and an aquatic bacterium," Water Sci. Technol., 50(6), 277-283(2004).
  3. 환경부. "물환경관리 기본계획 4대강 대권역 수질보전 기본계획," ('06-'15)(2006).
  4. 남선화, 양창용, 안윤주, 이재관. "국내 생물종을 이용한 생태독성평가 기반연구 : (I) 어류," Korean J. Limnol., 40(2), 173-183(2007).
  5. Hernando, M. D., Fernandez-Alba, A. R., Tauler, R., Barcelo, D., "Toxicity assays applied to wastewater treatment," Talanta, 65(3), 58-366(2005).
  6. Eaton, J. G., "Chronic toxicity of a copper, cadmium and zinc mixture to the fathead minnow (Pimephales promelas rafinesque)," Water Res., 7, 1723-1736(1973). https://doi.org/10.1016/0043-1354(73)90140-1
  7. Palma, P., Palma, V. L., Matos, C., Fernandes, R. M., Bohn, A., Soares, A.M.V.M., and Barbosa, I. R., "Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphniamagna," Chemosphere, 74, 676-681(2009). https://doi.org/10.1016/j.chemosphere.2008.10.021
  8. Hsieh, C.-Y., Tsai, M.-H., Ryan, D.K., and Pancorbo, O. C., "Toxicity of the 13 priority pollutant metals to Vibriofisheri in the Microtox? chronic toxicity test," Sci. Total Environ, 320, 37-50(2004). https://doi.org/10.1016/S0048-9697(03)00451-0
  9. Tzoris, A., Fernandez-Perez, V., and Hall, E. A. H., "Direct toxicity assessment with a mini portable respirometer," Sens. Actuators, B: Chemical, 105, 39-49(2005). https://doi.org/10.1016/S0925-4005(04)00109-1
  10. Gu, M. B., and Gil, G. C., "A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity," Biosens. Bioelectron., 16, 661-666(2001). https://doi.org/10.1016/S0956-5663(01)00195-6
  11. Liu, Y., Qin, Z., Wu, X., and Jiang, H., "Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode," Biochemi. Eng. J., 32, 211-217 (2006). https://doi.org/10.1016/j.bej.2006.10.003
  12. Kong, Z., Vanrolleghem, P. A., and Verstraete, W., "An activated sludge-based biosensor for rapid IC50 estimation and on-line toxicity monitoring," Biosens. Bioelectron., 8, 49-58 (1993). https://doi.org/10.1016/0956-5663(93)80043-O
  13. Steinberg, S. M., Poziomek, E. J., Engelmann, W. H., and Rogers, K. R., "A review of environmental applications of bioluminescence measurements," Chemosphere, 30, 2155-2197 (1995). https://doi.org/10.1016/0045-6535(95)00087-O
  14. Inui, T., Tanaka, Y., Okayasu, Y., and Tanaka, H., "Application of toxicity monitor using nitrifying bacteria biosensor to sewerage systems," Water Sci. Technol, 45(4-5), 271-278(2002).
  15. Tront, J. M., Fortner, J. D., Pl?ze, M., Hughes, J. B., and Puzrin, A. M., "Microbial fuel cell biosensor for in situ assessment of microbial activity," Biosens. Bioelectron., 24, 586-590 (2008). https://doi.org/10.1016/j.bios.2008.06.006
  16. Zlatev, R., Magnin, J.-P., Ozil, P., and Stoytcheva, M., "Bacterial sensors based on Acidithiobacillus ferrooxidans: Part I. $Fe^{2+}$ and $S_2{O_3}^{2-}$ determination," Biosens. Bioelectron., 21, 1493-1500 (2006). https://doi.org/10.1016/j.bios.2005.07.007
  17. Madigan, M. T., Martinko, J. M., and Parker, J., Brock biology of microorganisms, 10th ed., Pearson Education Inc., New York(2003).
  18. Liu, H. and Logan, B. E., "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environ. Sci. Technol. 38(14), 4040-4046(2004).
  19. Lake Access Home Page, http://lakeaccess.org/russ/conductivity.htm(2010).