References
- D. Linden, “Handbook of Batteries”, McGraw-Hill, New York (1995).
- M. Winter and J. O. Besenhard, M. E. Spahr, and P. Novak, ‘Insertion electrode materials for rechargeable lithium batteries’ Adv. Mater., 10, 725 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
-
J. R. Dahn, ‘Phase-diagram of
$Li_xC_6$ ’ Phys. Rev., B44, 9170 (1991). - T. Ohzuku, Y. Iwakoshi, and K. Sawai, ‘Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell’ J. Electrochem. Soc., 140, 2490 (1993). https://doi.org/10.1149/1.2220849
- Z. Jiang, M. Alamgir, and K. M. Abraham, ‘The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells’ J. Electrochem. Soc., 142, 333 (1995). https://doi.org/10.1149/1.2043997
- M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘In situ Raman study on electrochemical Li intercalation into graphite’ J. Electrochem. Soc., 142, 20 (1995). https://doi.org/10.1149/1.2043869
- A. Herold, ‘Recherches sur les composes dinsertion du graphite’ Bull. Soc. Chim. Fr., 187, 999 (1955).
- R. Fong, U. von Sacken, and J. R. Dahn, ‘Studies of lithium intercalation into carbons using nonaqueous electrochemical cells’ J. Electrochem. Soc., 137, 2009 (1990). https://doi.org/10.1149/1.2086855
- 0E. Peled, “Handbook of Battery Materials”, 419, Wiley-VCH, Weinheim (1999).
- E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
-
R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of
$Li_xC_6$ ’ J. Power Sources, 43-44, 39 (1993). - T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 221 (1995). https://doi.org/10.1016/0022-0728(95)03907-X
- A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997). https://doi.org/10.1016/S0378-7753(96)02556-6
- D. Bar-Tow, E. Peled, and L. Burstein, ‘A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries’ J. Electrochem. Soc., 146, 824 (1999). https://doi.org/10.1149/1.1391688
- E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, ‘Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies’ J. Power Sources, 97-98, 52 (2001). https://doi.org/10.1016/S0378-7753(01)00505-5
- K. Edstrom, M. Herstedt, and D. P. Abraham, ‘A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries’ J. Power Sources, 153, 380 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.062
- O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli ‘Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems’ J. Power Sources, 43-44, 47 (1993).
- Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, ‘The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition’ Electrochim. Acta,39, 2559 (1994). https://doi.org/10.1016/0013-4686(94)00221-5
- D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, ‘The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair Type Batteries’ J. Electrochem. Soc., 141, 603 (1994). https://doi.org/10.1149/1.2054777
- D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, ‘The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries’ J. Electrochem. Soc., 142, 2882 (1995). https://doi.org/10.1149/1.2048659
- Y. Ein-Eli, S. R. Thomas, V. Koch, D. Aurbach, B. Markovsky, and A. Schechter, ‘Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries’ J. Electrochem. Soc., 143, L273 (1996). https://doi.org/10.1149/1.1837293
- D. Aurbach, B. Markovsky, A. Schechter, and E. Ein-Eli, ‘A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures’ J. Electrochem. Soc., 143, 3809 (1996). https://doi.org/10.1149/1.1837300
- Y. Ein-Eli, S. F. McDevitt, D. Aurbach, B. Markovsky, and A. Schechter, ‘Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes’ J. Electrochem. Soc., 144, L180 (1997). https://doi.org/10.1149/1.1837792
- D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chuid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, ‘Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures andperformance of Li and Li-C intercalation anodes in several important electrolyte systems’ J. Power Sources, 68, 91 (1997). https://doi.org/10.1016/S0378-7753(97)02575-5
- D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, ‘Failure and stabilization mechanisms of graphite electrodes’ J. Phys. Chem. B, 101, 2195 (1997). https://doi.org/10.1021/jp962815t
- D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, and G. Salitra, ‘Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides’ J. Electrochem. Soc., 145, 3024 (1998). https://doi.org/10.1149/1.1838758
- D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, ‘On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries’ Electrochim. Acta, 45, 67 (1999). https://doi.org/10.1016/S0013-4686(99)00194-2
- D. Aurbach, ‘Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries’ J. Power Sources, 89, 206 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
- D. Aurbach, J. S. Gnanaraj, M. D. Levi, E. A. Levi, J. E. Fischer, and A. Claye, ‘On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes’J. Power Sources, 97-98, 92 (2001). https://doi.org/10.1016/S0378-7753(01)00594-8
- C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, ‘Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries’ J. Power Sources, 68, 277 (1997). https://doi.org/10.1016/S0378-7753(96)02629-8
- E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, ‘An advanced tool for the selection of electrolyte components for rechargeable lithium batteries’ J. Electrochem. Soc., 145, 3482 (1998). https://doi.org/10.1149/1.1838831
- Z. Ogumi, A. Sano, M. Inaba, and T. Abe, ‘Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode’ J. Power Sources, 97-98, 156 (2001). https://doi.org/10.1016/S0378-7753(01)00529-8
- J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, ‘Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes’ J. Power Sources, 54, 228 (1995). https://doi.org/10.1016/0378-7753(94)02073-C
- M. Winter, G. H. Wrodingg, J. O. Besenhard, W. Biberacher, and P. Novak, ‘Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes’ J. Electrochem. Soc., 147, 2427 (2000). https://doi.org/10.1149/1.1393548
- M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution’ Langmuir, 12, 1535 (1996). https://doi.org/10.1021/la950848e
- M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi, ‘Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate’ J. Power Sources, 68, 221 (1997). https://doi.org/10.1016/S0378-7753(96)02555-4
- M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution’ Electrochim. Acta,45, 99 (1999). https://doi.org/10.1016/S0013-4686(99)00196-6
- M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study of well-defined graphite/electrolyte interface polarized in propylene carbonate solution containing 12-crown-4’ Electrochemistry, 67, 1153 (1999).
- Z. Ogumi, S.-K. Jeong, M Inaba, and T. Abe, ‘Surface film formation on graphite negative electrodes in rechargeable lithium batteries’ Macromol. Symp., 156, 195 (2000). https://doi.org/10.1002/1521-3900(200007)156:1<195::AID-MASY195>3.0.CO;2-F
- S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001). https://doi.org/10.1149/1.1387981
- S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions’ Langmuir, 17, 8281 (2001). https://doi.org/10.1021/la015553h
- Z. Ogumi, M. Inaba, T. Abe, and S.-K. Jeong, “Studies in Surface Science and Catalysis”, 929, Elsevier Science B.V., Amsterdam (2001).
- S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions’ Electrochim. Acta, 47, 1975 (2002). https://doi.org/10.1016/S0013-4686(02)00099-3
- S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries’ J. Power Sources, 119-121, 555 (2003). https://doi.org/10.1016/S0378-7753(03)00288-X
- W. Huang and R. Frech, ‘In situ Raman studies of graphite surface structures during lithium electrochemical intercalation’ J. Electrochem. Soc., 145, 765 (1998). https://doi.org/10.1149/1.1838343
-
S.-K. Jeong, ‘AFM study on surface film formation on a graphite negative electrode in a
$LiPF_6$ -based non-aqueous solution’ J. Academia-Industrial Technology, 7, 1313 (2006). - H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000). https://doi.org/10.1016/S0304-3991(99)00139-4
- M. Morita, Y. Asai, N. Yoshimoto, and M. Ishikawa, ‘A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts’ J. Chem. Soc., Faraday Trans., 94, 3451 (1998). https://doi.org/10.1039/a806278a
- B. Klassen, R. Aroca, M. Nazri, and G. A. Nazri, ‘Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries’ J Phys. Chem. B, 102, 4795 (1998). https://doi.org/10.1021/jp973099d
- H. Yoshida, T. Fukunaga, T. Hazama, M. Mizutani, and M. Yamachi, ‘Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging’ J. Power Sources, 68, 311 (1997). https://doi.org/10.1016/S0378-7753(97)02635-9
- S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, ‘Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions’ J. Power Sources, 68, 59 (1997). https://doi.org/10.1016/S0378-7753(97)02619-0
- Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film’ Langmuir, 25, 12766 (2009). https://doi.org/10.1021/la901829v
-
F. Sagane, T. Abe, and Z. Ogumi, ‘
$Li^+$ -ion Transfer throughthe interface between$Li^+$ -ion conductive ceramic electrolyteand$Li^+$ -ion-concentrated propylene carbonate solution’ J. Physical Chemistry C, 113, 20135 (2009). https://doi.org/10.1021/jp908623c - Z. Ogumi, T. Abe, T. Fukutsuka, S. Yamate, and Y. Iriyama, ‘Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte’ J. Power Sources, 127, 72 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.009
- T. Saeki, H. Ohtani, A. Ito, K. Tanaka, and O. Hatozaki, “Extended Abstracts of the 50th Battery Symposium”, 169, Kyoto, Japan (2009).
- Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Physical Chemistry C, 113, 8948 (2009). https://doi.org/10.1021/jp9022458
-
K. Xu, ‘Charge-transfer process at graphite/electrolyte interface and the solvation sheath structure of
$Li^+$ in nonaqueous electrolytes’ J. Electrochem. Soc., 154, A162 (2007). https://doi.org/10.1149/1.2409866 - A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh, and K. Zaghib. ‘Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance’ J. Power Sources, 195, 845 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.056
- A. Kanetomo, M. Egashira, N. Yoshimoto, and M. Morita, “Extended Abstracts of the 50th Battery Symposium”, 162, Kyoto, Japan (2009).
- H. Nakagawa a, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, ‘Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells’ J. Power Sources, 174, 1021 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.133
- S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions’ Electrochemical and Solid-State Letters, 6, A13 (2003). https://doi.org/10.1149/1.1526781
- S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.065
- S.-K. Jeong, H. Seo, D. Kim, H. Han, J. Kim, Y. Lee, Y. Iriyama, T, Abe, and Z, Ogumi, ‘Suppression of dendritic lithium formation by using concentrated electrolyte solutions’ Electrochemistry Communications, 10, 635 (2008). https://doi.org/10.1016/j.elecom.2008.02.006
- A. N. Dey and B. P. Sullivan, ‘The electrochemical decomposition of propylene carbonate on graphite’ J. Electrochem. Soc., 117, 222 (1970). https://doi.org/10.1149/1.2407470
-
J. O. Besenhard and H. P. Fritz, ‘Cathodic reduction of graphite in organic solutions of alkali and
$NR^{4+}$ salts’ J. Electroanal. Chem., 53, 329 (1974). https://doi.org/10.1016/S0022-0728(74)80146-4 - G. Eichinger, ‘Cathodic decomposition reactions of propylene carbonate’ J. Electroanal. Chem., 74, 183 (1976). https://doi.org/10.1016/S0022-0728(76)80234-3
- M. Arakawa and J. Yamaki, ‘The cathodic decomposition of propylene carbonate in lithium batteries’ J. Electroanal. Chem., 219, 273 (1987). https://doi.org/10.1016/0022-0728(87)85045-3
- M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode at elevated temperatures’ Electrochemistry, 71, 1132 (2003).
- M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, ‘Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures’ Langmuir, 20, 1348 (2004). https://doi.org/10.1021/la035857z
- M. Suga, Y. Konyuba, S. Iwamatsu, Y. Watanabe, J. Osuga, H. Nishiyama, T. Ogura, and C. Sato, “Extended Abstracts of the 50th Battery Symposium”, 265, Kyoto, Japan (2009).
Cited by
- Electrochemical performances of lithium and sodium ion batteries based on carbon materials 2017, https://doi.org/10.1016/j.jiec.2017.12.036