DOI QR코드

DOI QR Code

Effect of Anode Thickness on the Overpotential in a Molten Carbonate Fuel Cell

용융탄산염형 연료전지에서 과전압에 미치는 전극두께의 영향

  • 이충곤 (한밭대학교 화학공학과) ;
  • 이성윤 (한밭대학교 화학공학과) ;
  • 류보현 (두산중공업 기술연구원) ;
  • 김도형 (한국전력공사 전력연구원) ;
  • 임희천 (한국전력공사 전력연구원)
  • Published : 2010.02.27

Abstract

This work investigated the effect of anode thickness on the anodic overpotential with $100\;cm^2$ class MCFC single cells. The hydrogen oxidation rate in the molten carbonate is sufficiently high, which may lead to weak relation of overpotential with anode geometrical area. The relation of anode surface area and overpotential was analysed in terms of anode thickness in this work. Steady state polarization, inert gas step addition (ISA), and reactant gas addition (RA) methods were employed to the two cells with 0.77 mm and 0.36 mm thickness of anode. The result represented that the anodic overpotential at the cells were identical. It implied that the anodic overpotential was independent on the electrode thickness within the tested range.

본 연구에서는 용융탄산염형 연료전지의 연료극 전극두께가 과전압에 미치는 영향을 $100\;cm^2$ 급 단위전지를 사용하여 검토하였다. 용융탄산염형 연료전지에서의 수소 산화속도는 충분히 빨라 전극면적이 성능에 크게 영향을 미치지 않을 수 있어, 본 연구에서는 전극의 기하학적 면적의 크기가 과 전압에 미치는 영향에 대해 연구하였다. 평가는 정상분극법과 비활성가스 계단형 첨가법 (ISA)와 반응물 첨가법 (RA)를 사용하여 연료극 두께 0.77 mm와 0.36 mm에 대해 수행하였다. 평가결과 두 전지에서 연료극 과전압이 거의 동일하게 관찰되어 연료극 두께에 의한 과전압의 차이는 발생하지 않았다.

Keywords

References

  1. P.G.P. Ang and A.F. Sammells, ‘Influence of Electrolyte Composition on Electrode Kinetics in the Molten Carbonate Fuel Cell' J. Electrochem. Soc., 127, 1287 (1980). https://doi.org/10.1149/1.2129873
  2. T. Nishina, M. Takahashi, and I. Uchida, ‘Gas Electrode Reactions in Molten Carbonate Media, IV. Electrode Kinetics and Mechanism of Hydrogen Oxidation in (Li+K)$CO_3$ Eutectic’ J. Electrochem. Soc., 137, 1112 (1990). https://doi.org/10.1149/1.2086612
  3. I. Uchida, T. Nishina, Y. Mugikura, and K. Itaya, ‘Gas Electrode Reactions in Molten Carbonate Media, I. Exchange Current Density of Oxygen Reduction in (Li+K)$CO_3$ Eutectic at $650{^{\circ}C}$’ J. Electroanal. Chem., 206, 229 (1986). https://doi.org/10.1016/0022-0728(86)90271-8
  4. S.-H. Lu and J. R. Selman, ‘Electrode kinetics of oxygen reduction on gold in molten carbonate’ J. Electroanal. Chem., 333, 257 (1992). https://doi.org/10.1016/0022-0728(92)80395-K
  5. K. Kinoshita, ‘Electrochemical oxygen technology‘, Electrochemical Society Series, Wiley-interscience publication, p.36 (1992).
  6. C.-G. Lee, B.-S. Kang, H.-K. Seo, and H.-C. Lim, ‘Effect of gas-phase transport in molten carbonate fuel cell’ J. Electroanal. Chem., 540, 169 (2003). https://doi.org/10.1016/S0022-0728(02)01304-9
  7. C.-G. Lee, and H.-C. Lim, ‘Experimental Investigation of Electrode Reaction Characteristics with Reactant Gas Addition Measurement in a Molten Carbonate Fuel Cell’ J. Electrochem. Soc., 152, A219 (2005). https://doi.org/10.1149/1.1833318
  8. C. Y. Yuh and J. R. Selman, ‘Polarization of the Molten Carbonate Fuel Cell Anode and Cathode’ J. Electrochem. Soc., 131, 2062 (1984). https://doi.org/10.1149/1.2116020
  9. L. J. M. J. Blomen and M. N. Mugerwa, ‘Fuel Cell Systems’, Plenum Press, p.375 (1993).
  10. C.-G. Lee, D.-H. Kim, and H.-C. Lim, ‘Electrode Reaction Characteristics under Pressurized Conditions in a Molten Carbonate Fuel Cell’ J. Electrochem. Soc., 154, B396 (2007). https://doi.org/10.1149/1.2434688
  11. C.-G. Lee, S.-Y. Lee, J.-Y. Hwang, M. Oh, D.-H. Kim, and H.-C. Lim, ‘Effect of Anode Area on the Cell Performance in a Molten Carbonate Fuel Cell’ J. Electrochem. Soc., 155, A138 (2008). https://doi.org/10.1149/1.2815573
  12. T. Nishina, I. Uchida, and J. R. Selman, ‘Gas Electrode Reaction in Molten Carbonate Media, V. Electrochemical Analysis of the Oxygen Reduction Mechanism at a Fully Immersed Gold Electrode’ J. Electrochem. Soc., 141, 1191 (1994). https://doi.org/10.1149/1.2054895

Cited by

  1. Improved molten carbonate fuel cell performance via reinforced thin anode vol.37, pp.21, 2012, https://doi.org/10.1016/j.ijhydene.2012.08.057
  2. Performance of molten carbonate fuel cell with Li-Na and Li-K carbonate electrolyte at extremely high-temperature condition vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0098-5