DOI QR코드

DOI QR Code

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu (School of Chemical Engineering, Sungkyunkwan University)
  • Published : 2010.02.27

Abstract

Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

Keywords

References

  1. http://en.wikipedia.org/wiki/Richard_Smalley.
  2. B. O’Regan and M. Gratzel, ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films’ Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. M. Gratzel, ‘Solar energy conversion by dye-sensitized photovoltaic cells’ Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  4. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, ‘Dye-Sensitized solar cells with conversion efficiency of 11.1%’ Jpn. J. Appl. Phys. Part 2, 45, L638 (2006). https://doi.org/10.1143/JJAP.45.L638
  5. H. -J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. -G. Park, ‘Nano-embossed hollow spherical $TiO_2$ as bifunctional material for high-efficiency dye-sensitized solar cells’ Adv. Mater., 20, 195, (2008). https://doi.org/10.1002/adma.200700840
  6. N. -G. Park and K. Kim, ‘Transparent solar cells based on dye-sensitized nanocrystalline semiconductors’ Phys. Stat. Sol. (a), 205, 1895 (2008). https://doi.org/10.1002/pssa.200778938
  7. J. van de Lagemaat, N. -G. Park, and A. J. Frank, ‘Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline $TiO_2$ solar cells: A study by electrical impedance and optical modulation techniques’ J. Phys. Chem. B, 104, 2044 (2000). https://doi.org/10.1021/jp993172v
  8. D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, ‘Nature of photovoltaic action in dye-sensitized solar cells’ J. Phys. Chem. B, 104, 2053 (2000). https://doi.org/10.1021/jp993187t
  9. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, ‘Nanocrystalline titanium oxide electrodes for photovoltaic applications’ J. Am. Ceram., Soc., 80, 3157 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  10. N. -G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, ‘Dye-sensitized $TiO_2$ solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of $TiCl_4$’ J. Phys. Chem. B, 103, 3308 (1999). https://doi.org/10.1021/jp984529i
  11. N.-G. Park, J. van de Lagemaat and A. J. Frank, ‘Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells’ J. Phys. Chem. B, 104, 8989 (2000). https://doi.org/10.1021/jp994365l
  12. P. E. de Jongh and D. Vanmaekelbergh, ‘Investigation of the electronic transport properties of nanocrystalline particulate $TiO_2$ electrodes by intensity-modulated photocurrent spectroscopy’ J. Phys. Chem. B, 101, 2716 (1997). https://doi.org/10.1021/jp962226n
  13. N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, ‘Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous $TiO_2$’ J. Phys. Chem. B, 104, 3930 (2000). https://doi.org/10.1021/jp9936603
  14. J. Nelson, ‘Continuous-time random-walk model of electron transport in nanocrystalline $TiO_2$ electrodes’ Phys. Rev. B, 59, 15374 (1999). https://doi.org/10.1103/PhysRevB.59.15374
  15. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, ‘InfluenInflthe percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells’ J. Phys. Chem. B, 107, 7759 (2003). https://doi.org/10.1021/jp022681l
  16. S. Ito, T. Kitamura, Y. Wada, and S. Yanagida, ‘Facile fabrication of mesoporous $TiO_2$ electrodes for dye solar cells: chemical modification and repetitive coating’ Sol. Energy Mater. Sol. Cells, 76, 3 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X
  17. J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, ‘Recombination and transport processes in dye-sensitized solar cells investigated under working conditions’ J. Phys. Chem. B, 110, 17715 (2006). https://doi.org/10.1021/jp064046b
  18. S. Ito, S. M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, ‘High-efficiency organicdye-sensitized solar cells controlled by nanocrystalline-$TiO_2$ electrode thickness’ Adv. Mater., 18, 1202 (2006). https://doi.org/10.1002/adma.200502540
  19. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, ‘Influence of scattering layers on efficiency of dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  20. W. E. Vargas, ‘Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering’ J. Appl. Phys., 88, 4079 (2000). https://doi.org/10.1063/1.1289230
  21. Z. -S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, ‘Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell’ Coord. Chem. Rev., 248, 1381 (2004). https://doi.org/10.1016/j.ccr.2004.03.006
  22. A. Usami, ‘Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell’ Chem. Phys. Lett., 277, 105 (1997). https://doi.org/10.1016/S0009-2614(97)00878-6
  23. A. Usami, ‘Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells’ Sol. Energy Mater. Sol. Cells, 64, 73 (2000). https://doi.org/10.1016/S0927-0248(00)00049-0
  24. J. Ferber and J. Luther, ‘Computer simulations of light scattering and absorption in dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 54, 265 (1998). https://doi.org/10.1016/S0927-0248(98)00078-6
  25. A. Usami, ‘Rigorous solutions of light scattering of neighboring $TiO_2$ particles in nanocrystalline films’ Solar Energy Mater. Sol. Cells, 59, 163 (1999). https://doi.org/10.1016/S0927-0248(99)00068-9
  26. W. E. Vargas and G. A. Niklasson, ‘Optical properties of nano-structured dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 69, 147 (2001). https://doi.org/10.1016/S0927-0248(00)00388-3
  27. H. -J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, ‘Size-dependent scattering efficiency in dye-sensitized solar cell’ Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  28. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, ‘Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells’ Chem. Commun., 15, 2011 (2005).
  29. K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. -G. Park, ‘Selective positioning of organic dyes in a mesoporous inorganic oxide film’ Nature Mater., 8, 665 (2009). https://doi.org/10.1038/nmat2475
  30. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, ‘Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions’ Electrochim. Acta, 47, 4213 (2002). https://doi.org/10.1016/S0013-4686(02)00444-9
  31. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, ‘Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy’ Sol. Energy Mater. Sol. Cells, 87, 117 (2005). https://doi.org/10.1016/j.solmat.2004.07.017
  32. Q. Wang, J. -E. Moser, and M. Gratzel, ‘Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells’ J. Phys. Chem. B, 109, 14945 (2005). https://doi.org/10.1021/jp052768h
  33. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, ‘Determination of parameters of electron transport in dyesensitized solar cells using electrochemical impedance spectroscopy’ J. Phys. Chem. B, 110, 13872 (2006). https://doi.org/10.1021/jp061693u

Cited by

  1. Dye-sensitized solar cell based on spray deposited ZnO thin film: Performance analysis through DFT approach vol.136, 2015, https://doi.org/10.1016/j.saa.2014.09.121
  2. An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth vol.13, pp.6, 2013, https://doi.org/10.5573/JSTS.2013.13.6.635
  3. Dye sensitized solar cells: From genesis to recent drifts vol.70, 2017, https://doi.org/10.1016/j.rser.2016.11.136