Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm

활성자극 파라다임 fMRI에서 저주파요동 성분분석

  • Na, Sung-Min (Department of Medical and Biological Engineering, Kyungpook National University) ;
  • Park, Hyun-Jung (Jeju National University College of Veterinary Medicine) ;
  • Chang, Yong-Min (Department of Medical and Biological Engineering, Kyungpook National University)
  • 나성민 (경북대학교 대학원 의용생체공학과) ;
  • 박현정 (제주대학교 수의과대학) ;
  • 장용민 (경북대학교 대학원 의용생체공학과)
  • Received : 2010.11.01
  • Accepted : 2010.11.08
  • Published : 2010.12.30

Abstract

Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

목적 : 활성자극 파라다임을 사용한 기능적 자기공명영상 데이터에서 자발적 요동에 해당하는 저주파 BOLD 신호의 존재여부를 규명해 보고자 하였다. 대상 및 방법 : 20명의 여자 양궁선수들과 양궁 경험이 없는 23명의 여자들을 대상으로 finger-tapping 파라다임은 30초간의 운동기와 휴지기를 3회 반복하였다. 혈액산소수준의존(BOLD) fMRI 영상은 3.0 T MR 기기에서 경사자장 반향 EPI 영상을 해부학적 영상은 3차원 T1 강조영상을 사용하였다. 뇌활성화 차이는 SPM-5를 사용하여 분석하였고 저주파 요동성분을 찾기 위해 GIFT 프로그램을 사용하였다. 결과 : 두군 모두에서 finger-tapping에 따라 대뇌좌측의 주운동영역과 보조운동영역 그리고 우측 소뇌에서의 활성화가 관찰되었다. GIFT를 사용한 ICA 분석에서 피검자들의 반측 감각운동망, 동측 감각운동망 그리고 인지기능과 연관된 신경망에 해당하는 독립적인 성분들이 구별되었다. 결론 : Finger-tapping fMRI 데이터에서 BOLD 신호의 자발적 요동에 해당하는 저주파 신호 성분들을 ICA 기법을 사용하여 분리해 낼수 있었고 이러한 독립성분들이 일차운동감각 신경망 그리고 운동 인지기능을 담당하는 신경망의 휴지기 신경활동을 나타낸다는 사실을 규명할 수 있었다.

Keywords

References

  1. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain-function during task activation. Magn Reson Med 1992;25:390-397 https://doi.org/10.1002/mrm.1910250220
  2. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation-functional brain mapping with magnetic-resonance-imaging. Proc Natl Acad Sci USA 1992;89:5951-5955 https://doi.org/10.1073/pnas.89.13.5951
  3. Attwell D, Laughlin SB. An energy budget for signalling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21: 1133-1145 https://doi.org/10.1097/00004647-200110000-00001
  4. Ames AI. CNS energy metabolism as related to function. Brain Res Rev 2000;34:42-68 https://doi.org/10.1016/S0165-0173(00)00038-2
  5. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci 2006;29:449-76 https://doi.org/10.1146/annurev.neuro.29.051605.112819
  6. Indovina I, Sanes JN. Combined visual attention and finger movement effects on human brain representations. Exp Brain Res 2001;140:265-279 https://doi.org/10.1007/s002210100796
  7. Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M. Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 1996;16:2691-2700
  8. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain. Magn Reson Med 1995;34:537-541 https://doi.org/10.1002/mrm.1910340409
  9. Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE. Three dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a metaanalysis. Neuroimage 2006;31:1453-1474 https://doi.org/10.1016/j.neuroimage.2006.02.004
  10. Mushiake H, Inase M, Tanji J. Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 1991;66:705-718 https://doi.org/10.1152/jn.1991.66.3.705
  11. Cunnington R,Windischberger C, Deecke L, Moser E. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 2002;15:373-385 https://doi.org/10.1006/nimg.2001.0976
  12. Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 1999;81:3065-3077 https://doi.org/10.1152/jn.1999.81.6.3065
  13. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, and Brooks DJ. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 2000;123:1216-1228 https://doi.org/10.1093/brain/123.6.1216
  14. Badre D, Wagner AD. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 2007; 45(13):2883-901 https://doi.org/10.1016/j.neuropsychologia.2007.06.015
  15. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity- related fluctuations in fMRI. Neuroimage 2006;15:1536- 1548
  16. Shmueli K, van Gelderen P, de Zwart JA, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007;38:306-320 https://doi.org/10.1016/j.neuroimage.2007.07.037