Development of a Korean Standard Structural Brain Template in Cognitive Normals and Patients with Mild Cognitive Impairment and Alzheimer's Disease

정상노인 및 경도인지장애 및 알츠하이머성 치매 환자에서의 한국인 뇌 구조영상 표준판 개발

  • Kim, Min-Ji (Department of Biomedical Engineering, Kyunghee University) ;
  • Jahng, Geon-Ho (Department of Radiology, Kyunghee University Hospital-Gangdong, School of Medicine, Kyunghee University) ;
  • Lee, Hack-Young (Department of Neurology, Gangdong Kyunghee University Hospital-Gangdong, School of Medicine, Kyunghee University) ;
  • Kim, Sun-Mi (Department of Radiology, Kyunghee University Hospital-Gangdong, School of Medicine, Kyunghee University) ;
  • Ryu, Chang-Woo (Department of Radiology, Kyunghee University Hospital-Gangdong, School of Medicine, Kyunghee University) ;
  • Shin, Won-Chul (Department of Neurology, Gangdong Kyunghee University Hospital-Gangdong, School of Medicine, Kyunghee University) ;
  • Lee, Soo-Yeol (Department of Biomedical Engineering, Kyunghee University)
  • 김민지 (경희대학교 대학원 생체의용공학과) ;
  • 장건호 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 이학영 (경희대학교 의과대학 강동경희대학교병원 신경과) ;
  • 김선미 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 류창우 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 신원철 (경희대학교 의과대학 강동경희대학교병원 신경과) ;
  • 이수열 (경희대학교 대학원 생체의용공학과)
  • Received : 2010.09.30
  • Accepted : 2010.11.30
  • Published : 2010.12.30

Abstract

Purpose : To generate a Korean specific brain template, especially in patients with Alzheimer's disease (AD) by optimizing the voxel-based analysis. Materials and Methods : Three-dimensional T1-weighted images were obtained from 123 subjects who were 43 cognitively normal subjects and patients with 44 mild cognitive impairment (MCI) and 36 AD. The template and the corresponding aprior maps were created by using the matched pairs approach with considering differences of age, gender and differential diagnosis (DDX). We measured several characteristics in both our and the MNI templates, including in the ventricle size. Also, the fractions of gray matter and white matter voxels normalized by the total intracranial were evaluated. Results : The high resolution template and the corresponding aprior maps of gray matter, white matter (WM) and CSF were created with the voxel-size of $1{\times}1{\times}1\;mm$. Mean distance measures and the ventricle sizes differed between two templates. Our brain template had less gray matter and white matter areas than the MNI template. There were volume differences more in gray matter than in white matter. Conclusion : Gray matter and/or white matter integrity studies in populations of Korean elderly and patients with AD are needed to investigate with this template.

목적 : 자기공명영상을 이용한 치매연구에서 삼차원 T1강조 뇌 구조 영상으로 뇌기능을 분석할 경우 복셀 기반 형태분석 방법이 이용 된다. 그러나 일반적으로 The Montreal Neurological Institute (MNI) 152 라는 젊은 서양성인 뇌로 만들어진 표준판에 정규화되고 이는 분석오차가 생길 수 있어 한국 노인 및 치매환자의 뇌를 분석할 경우 부정확한 결과를 초래한다. 따라서, 본 연구의 목적은 뇌 분석을 최적화 하기 위해 한국 노인 및 치매 환자의 뇌 구조 영상의 표준판을 개발하는데 있다. 대상 및 방법 : 검사장비는 3테슬러를 이용하였으며 8채널 SENSE (sensitivity encoding) 머리코일을 이용하였다. 펄스열은 삼차원 T1 강조 터보 경사자장 타입으로 뇌의 해부학 영상을 획득하였다. 신경심리 검사 점수결과에 따라 정상 노인 43명, 경도인지장애 환자 44명, 알츠하이머성 치매 환자 36명 의 세 그룹으로 나누었다. 일반 선형 모델 방정식을 사용하여 나이와 성별 및 질환간의 차이에 의한 인자를 고려 하였으며, 평가된 인자는 쌍일치 접근 방법으로 한국 노인과 치매 환자의 뇌 표준판을 만들었다. 두 표준판의 Talairach 기준 점에 따른 평균거리와 뇌실의 거리를 계산하였다. 또한 뇌 전체 영역에서 회백질과 백질을 확률이 50% 이상인 복셀 개수를 세어 회백질과 백질의 영역을 계산하였다. 결과 : 최종 뇌 표준판은 MNI152뇌 표준판과 비교했을 경우 공간 분해능이 높았고, 평균거리와 뇌실의 크기에서 차이가 있었다. 회백질 및 백질의 영역은 본 연구에서 개발한 뇌 표준판의 회백질과 백질 모두에서 더 적었고, 백질보다 회백질에서 더 많은 차이가 있었다. 결론 : 본 연구에서 개발한 한국 뇌 표준판은 앞으로 한국 노인과 치매환자의 질환을 분석하는 연구에 유용할 것으로 생각된다.

Keywords

References

  1. Brant-Zawadzki, M, G.D. Gillan, and W.R. Nitz, MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology 1992;182:769-775 https://doi.org/10.1148/radiology.182.3.1535892
  2. Yamashita E, et al. Evaluation of three-dimensional fast spoiled gradient recalled acquisition in the steady state (FSPGR) using ultra magnetic field 3-Tesla MRI for optimal pulse sequences of T1-weighted imaging. Nippon Hoshasen Gijutsu Gakkai Zasshi 2006;62:297-304 https://doi.org/10.6009/jjrt.62.297
  3. Pruessner JC, et al. Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 2000;10:433-442 https://doi.org/10.1093/cercor/10.4.433
  4. Ashburner J. and K.J. Friston, Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821 https://doi.org/10.1006/nimg.2000.0582
  5. Evans AC, et al. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1992;1:43-53 https://doi.org/10.1016/1053-8119(92)90006-9
  6. Braak, H. and E. Braak, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-59 https://doi.org/10.1007/BF00308809
  7. Lim HK, Choi EH, and Lee CH, A voxel-Based Morphometry of gray matter reduction in patients with dementia of the Alzheimer's type. Kor J Biol Psychia 2008;15:118-125
  8. Kakeda, S. and Y. Korogi, The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a review. Neuroradiology, 2010
  9. Frisoni GB, et al. The Clinical Use of Structural MRI in Alzheimer Disease. Nat Rev Neurol 2010;6:67-77 https://doi.org/10.1038/nrneurol.2009.215
  10. Choi SH, et al. Optimized VBM in patients with alzheimer's disease: gray matter loss and its correlation with cognitive function. J Kor Rad Soc 2005;53:323-329 https://doi.org/10.3348/jkrs.2005.53.5.323
  11. Abe O, et al. Voxel-based analysis of the diffusion tensor. Neuroradiology, 2010
  12. Jahng, GH and N. Schuff, Influence of selecting EPI readoutencoding bandwidths on arterial spin labeling perfusion MRI. MAGMA 2009;22:287-295 https://doi.org/10.1007/s10334-009-0174-2
  13. Schweinhardt P, et al. A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods 2003;129:105-113 https://doi.org/10.1016/S0165-0270(03)00192-4
  14. Tang S, et al. RABBIT: rapid alignment of brains by building intermediate templates. Neuroimage 2009;47:1277-1287 https://doi.org/10.1016/j.neuroimage.2009.02.043
  15. Kazemi K, et al. A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage 2007;37:463-473 https://doi.org/10.1016/j.neuroimage.2007.05.004
  16. Choi DY, et al. Development of Korean standard brain templates according to gender and age. The Korean J Aant 2004; 37:255-261
  17. Lee JS, et al. Development of Korean standard brain templates. J Korean Med Sci 2005;20:483-488 https://doi.org/10.3346/jkms.2005.20.3.483
  18. Shin DH, et al. A study on the deviation of cluster based on template images of Korean children's brain SPECT image using the statistical parametic mapping. Kor Med Phys 2004; 15:45-53
  19. Talairach, J. and P. Tournoux, Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system-an approach to cerebral imaging. Thieme Medical Publishers 1988: p. 1
  20. Lancaster JL, et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 2007;28:1194-1205 https://doi.org/10.1002/hbm.20345
  21. Zilles, K, et al. Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences. Neuroimage 2001;13:262-271
  22. Chung SC, et al. The voumetric study of the ventricle in Korean according to age and gender. Kor J Anat 2005;38:207- 213
  23. May, A. and C. Gaser, Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 2006;19:407-411 https://doi.org/10.1097/01.wco.0000236622.91495.21
  24. Wells WM, et al. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996;15:429-442 https://doi.org/10.1109/42.511747
  25. Wilke M, et al. Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 2008;41:903-913 https://doi.org/10.1016/j.neuroimage.2008.02.056
  26. Franke K, et al. BrainAGE: a completely automated age estimation framework using structural MRI. 16th Annual Meeting of the Organization for Human Brain Mapping. 2010. Barcelona, Spain
  27. Karas G, et al. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study. Neuroradiology 2007;49:967-976 https://doi.org/10.1007/s00234-007-0269-2
  28. Lee JS, et al. Development of Korean Standard Brain Templates. Kor Acad Med Sci 2005;20:483-488 https://doi.org/10.3346/jkms.2005.20.3.483