Adaptive Finite Element Mesh Generation Schemes for Dynamic Structural Analyses

  • Published : 2010.02.28

Abstract

Reliable dynamic analysis is essential in order to properly maintain structures so that structural hazards may be minimized. The finite element method (FEM) is proven to be an affective approximate method of structural analysis if proper element types and meshes are chosen. When the method is applied to dynamics analyzed in time domain, the meshes may need to be modified at each time step. As many meshes need to be generated, adaptive mesh generation schemes have become an important part in complex time domain dynamic finite element analyses of structures. In this paper, an adaptive mesh generation scheme for dynamic finite element analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method (node movement) and the r-method (element division). The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

구조물의 방재를 위해서 구조물의 효율적인 유지관리는 필수적이며, 여기서 신뢰 있는 구조물의 동적해석은 중요한 역할을 한다. 유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리 잡고 있으며, 요소와 요소망이 제대로 선택되면 신뢰 있는 해석 결과를 출력한다. 시간 영역 동적해석에 유한요소법을 사용하려면 각 시간 단계에서 요소망을 재형성할 필요가 생길 수 있는데, 여기에 연산 시간 측면에서 효율적인 적응적 요소망 전략을 사용하면 편리하다. 본 연구는 시간영역 동적해석에서 전단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가하는데 사용하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보의 예제를 통하여 정확성과 연산 효율성을 검증하였고 나아가 방법의 간단함이 지진 하중, 풍하중 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용될 수 있는 것을 보여 준다.

Keywords

References

  1. Bathe, K.J. and Wilson, E.L. (1976) Numerical Methods in Finite Element Analysis. Prentice Hall, Englewood Cliffs.
  2. Belytschko, T. (1974) Transient Analysis. Structural Mechanics, Computer Programs, Surveys, Assessments, and Availability, Edited by Pilkey, W., Saczalski, K. and Schaeffer, H. University of Virginia Press, Charlottesville, Virginia, pp. 255-276.
  3. Belytschko, T., Hughes, J.R., and Bathe, K.J. (1996) Finite Element Procedures. Prentice-Hall, Englewood Cliffs.
  4. Choi, C., and Jung, H. (1998) Adaptive Mesh Generation for Dynamic Finite element Analysis, J. Korean Soc. of Civil Eng. (in Korean), Vol. 18, No. 1-2, pp. 203-220.
  5. Choi, C.K., and Yu, W.J. (1998) Adaptive Finite Element Wind Analysis with Mesh Refinement and Recovery (in Korean). Wind and Structures, Vol. 1, pp. 111-125. https://doi.org/10.12989/was.1998.1.1.111
  6. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989) Concepts and Applications of Finite Element Analysis, 3rd Ed. John Wiley & Sons, New York.
  7. de Las Casas, E.B. (1988) R-H Mesh Improvement Algorithms for the Finite Element Method, Ph.D. Dissertation, Purdue University, West Lafayette.
  8. Heesom, D. and Mahdjoubi, L. (2001) Effect of Grid Resolution and Terrain Characteristics on Data from DTM. J. Comp. in Civil Eng., ASCE, Vol. 15, No. 2, pp. 137-143. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:2(137)
  9. Hwang, S.W. (1988) A Study on the r-h Method in the Finite Element Method, Master's Thesis(in Korean), Inha University, Inchon.
  10. Jeong, Y.C. and Yoon, C. (2003) Representative Strain Value Based Adaptive Mesh Generation for Plane Stress. Hongik J. Science and Tech., Vol. 7, pp. 71-86.
  11. Jeong, Y.C., Yoon, C. and Hong, S. (2003) Adaptive Mesh Generation Scheme for Planar problems using Representative Strain Values for Error (in Korean). Proc., Korean Soc. Comp. Structural Eng., Vol. 16, No. 2-31, pp. 403-409.
  12. Ladeveze, P. and Oden, J.T., Editors. (1998) Advances in Adaptive Computational Methods in Mechanics Studies in Applied Mechanics 47, Elsevier, Oxford.
  13. MacLeod, I.A. (2002) The Education of Structural Analyst. Proc., Asranet Symp., Asranet, Dept. of Naval Architecture and Marine Eng., Univ. of Glasgow and Strathclyde, London.
  14. McFee, S. and Giannacopoulos, D. (2001) Optimal Discretizations in Adaptive Finite Element Electromagnetics. Int. J. Numer. Meth. Eng., Vol. 52, No. 9, pp. 939-978. https://doi.org/10.1002/nme.240
  15. Newmark, N.M. (1959) A Method of Computation for Structural Dynamics. J. Eng. Mech. Division, American Society of Civil Engineers, Vol. 85, No. EM3, pp. 67-94.
  16. Ohnimus, S., Stein, E. and Walhorn, E. (2001) Local Error Estimates of FEM for Displacements and Stresses in Linear Elasticity by Solving Local Neumann Problems. Int. J. Numer. Meth. Eng., Vol. 52, No. 7, pp. 727-746. https://doi.org/10.1002/nme.228
  17. Rafiq, M.Y. and Easterbrook, D.J. (2005) Using the Computer to Develop a Better Understanding in Teaching Structural Engineering Behavior to Undergraduates. J. Comp. in Civil Eng., Vol. 19, No. 1 pp. 34-44. https://doi.org/10.1061/(ASCE)0887-3801(2005)19:1(34)
  18. Reddy, J.N. (1993) An Introduction to the Finite Element Method, 2nd Ed., McGraw-Hill, New York.
  19. Stampfle, M., Hunt, K.J. and Kalkkuhl, J. (2001) Efficient Simulation of Parameter-Dependent Vehicle Dynamics. Int. J. Numer. Meth. Eng., Vol. 52, No. 11, pp. 1273-1299. https://doi.org/10.1002/nme.254
  20. Yoon, C. (2005) Adaptive Mesh Generation for Dynamic Finite Element Analysis (in Korean). J. Korean Soc. Civil Eng., Vol. 25, No. 6A, pp. 989-998.
  21. Yoon, C. (2009) Computer Aided Teaching of Structural Engineering Using Adaptive Schemes in the Finite Element Method. J. Korean Soc. Hazard Mitigation., Vol. 9, No. 1, pp. 9-13.
  22. Zhu, J.Z., Zienkiewicz, O.C., Hinton, E. and Wu, J. (1991) A New Approach to the Development of Automatic Quadrilateral Mesh Generation. Int. J. Numer. Meth. Eng., Vol. 32, pp. 849-866. https://doi.org/10.1002/nme.1620320411
  23. Zienkiewicz, O.C., Taylor, R.L, and Zhu, J.Z. (2005) The Finite Element Method: Its Basis and Fundamentals, 6th Ed. Elsevier Butterworth-Heinemann, Oxford.
  24. Zienkiewcz, O.C., and Zhu, J.Z. (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int. J. Numer. Meth. Eng., Vol. 24, pp. 337-357. https://doi.org/10.1002/nme.1620240206