DOI QR코드

DOI QR Code

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion

  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Eun-Hee (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2010.03.20

Abstract

Second-order rate constants ($k_{CN^-}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-r) with $CN^-$ ion in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot is linear with ${\beta}_{1g}$ = -0.49, a typical ${\beta}_{1g}$ value for reactions reported to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^{\circ}$ and ${\sigma}^-$ constants exhibit many scattered points. In contrast, the Yukawa-Tsuno plot for the same reaction exhibits excellent linearity with ${\rho}_Y$ = 1.37 and r = 0.34, indicating that a negative charge develops partially on the oxygen atom of the leaving aryloxide in the rate-determining step (RDS). Although two different mechanisms are plausible (i.e., a concerted mechanism and a stepwise pathway in which expulsion of the leaving group occurs at the RDS), the reaction has been concluded to proceed through a concerted mechanism on the basis of the magnitude of ${\beta}_{1g}$ and ${\rho}_Y$ values.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  2. Page, M. I.;Williams, A. Organic and Bio-organic Mechanisms; Longman:Harlow, U. K., 1997; Chapter 7.
  3. Castro, E. A. Chem. Rev. 1999,99, 3505-3524. https://doi.org/10.1021/cr990001d
  4. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004,8, 557-567. https://doi.org/10.2174/1385272043370753
  5. Menger, F. M.; Smith, J. H. J. J. Am. Chem. Soc.1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  6. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  7. Ba-Saif,S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  8. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am.Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  9. Andres, G. O.; Granados, A.M.; Rossi, R. H. J. Org. Chem. 2001, 66, 7653-7657. https://doi.org/10.1021/jo010499v
  10. Castro,E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001,66, 6571-6575. https://doi.org/10.1021/jo0101252
  11. Hess, R. A.; Hengge, A. C.; Cleland, W. W. J.Am. Chem. Soc. 1997, 119, 6980-6983. https://doi.org/10.1021/ja970648k
  12. Guthrie, J. P. J. Am.Chem. Soc. 1996, 118, 12878-12885. https://doi.org/10.1021/ja961860b
  13. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111,971-975. https://doi.org/10.1021/ja00185a029
  14. Pregel, M.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc.1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  15. Wubbels, G. G.; Brown, T. R.; Babcock, T. A.; Johnson, K. M.J. Org. Chem. 2008, 73, 1925-1934. https://doi.org/10.1021/jo702468d
  16. Tumanov, V. V.; Tishkov,A. A.; Mayr, H. Angew. Chem., Int. Ed. 2007, 46, 3563-3566. https://doi.org/10.1002/anie.200605205
  17. Almerindo, G. I.; Pliego, J. R. Chem. Phys. Lett. 2006, 423, 459-462. https://doi.org/10.1016/j.cplett.2006.04.015
  18. Fang, Y.; MacMillar, S.; Eriksson, J.; Kolodziejska-Huben,M.; Dybala-Defratyka, A.; Paneth, P.; Matsson, O.; Westaway,K. C. J. Org. Chem. 2006, 71, 4742-4747. https://doi.org/10.1021/jo052375e
  19. Park, G.; Kim, S. C.;Kang, H. Y. Bull. Korean Chem. Soc. 2005, 26, 1339-1343. https://doi.org/10.5012/bkcs.2005.26.9.1339
  20. Almerindo, G. I.; Pliego, J. R., Jr. Org. Lett. 2005, 7, 1821-1823. https://doi.org/10.1021/ol0504547
  21. Minegishi, S.; Mayr, H. J. Am. Chem. Soc. 2003, 125, 286-295. https://doi.org/10.1021/ja021010y
  22. Westaway, K. C.; Fang, Y. R.; Persson, J.; Matsson, O. J. Am.Chem. Soc. 1998, 120, 3340-3344. https://doi.org/10.1021/ja972981u
  23. Matsson, O.; Persson, J.;Axelsson, B. S.; Laangstroem, B.; Fang, Y.; Westaway, K. C. J.Am. Chem. Soc. 1996, 118, 6350-6354. https://doi.org/10.1021/ja951998e
  24. Richard, J. P.; Jencks,W. P. J. Am. Chem. Soc. 1984, 106, 1383-1396. https://doi.org/10.1021/ja00317a033
  25. Ritchie, C. D.;VanVerth, J. E.; Virtanen, P. O. I. J. Am. Chem. Soc. 1982, 104,3491-3497. https://doi.org/10.1021/ja00376a041
  26. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem.2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
  27. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org.Chem. 2009, 74, 1212-1217 https://doi.org/10.1021/jo802446y
  28. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem.2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  29. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang,S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  30. Um, I. H.;Kim, E. H.; Han, H. J. Bull. Korean Chem. Soc. 2008, 29, 580-584. https://doi.org/10.5012/bkcs.2008.29.3.580
  31. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14,7324-7330. https://doi.org/10.1002/chem.200800553
  32. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol.Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  33. Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005,83, 1365-1371. https://doi.org/10.1139/v05-157
  34. Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur.J. 2009, 15, 1011-1017. https://doi.org/10.1002/chem.200801534
  35. Middleton, W. J.; Howard, E. G.; Sharkey, W. H. J. Org. Chem.1965, 30, 1375-1384. https://doi.org/10.1021/jo01016a008
  36. Pedersen, B. S.; Scheibye, S.; Nilsson,N. H.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 223-228.
  37. Harris, J. F.; Stacey, F. W. J. Am. Chem. Soc. 1963, 85, 749-754. https://doi.org/10.1021/ja00889a022
  38. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67,8999-9005. https://doi.org/10.1021/jo0259360
  39. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J.Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  40. Um, I. H.; Kim, E. Y.; Park,H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  41. Um, I.H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71,9191-9197. https://doi.org/10.1021/jo061682x
  42. Um, I. H.; Yoon, S.; Park, H. R.; Han, H. J. Org.Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  43. Um, I. H.; Hwang, S. J.;Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  44. Ho, T. L. In Hard and soft acid and bases; Pearson, R. G. Ed.;Academic Press: New York, 1977.
  45. Jones, R. A. Y. Physical and mechanistic organic chemistry; 2nd ed.; Cambridge University Press: London, 1984; pp 135-137.
  46. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  47. Um, I. H.; Seo, J. A.; Lee, H. M. Bull. Korean Chem. Soc. 2008,29, 1915-1919. https://doi.org/10.5012/bkcs.2008.29.10.1915
  48. Um, I. H.; Akhtar, K. Bull. Korean Chem. Soc.2008, 29, 772-776. https://doi.org/10.5012/bkcs.2008.29.4.772
  49. Um, I. H.; Seo, J. A.; Chun, S. M. Bull.Korean Chem. Soc. 2008, 29, 1459-1463. https://doi.org/10.5012/bkcs.2008.29.8.1459
  50. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem.2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  51. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org.Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  52. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am.Chem. Soc. 1988, 110, 1890-1895. https://doi.org/10.1021/ja00214a037
  53. Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 515-521.
  54. Younker, J. M.; Hengge, A. C. J. Org. Chem. 2004, 69, 9043-9048. https://doi.org/10.1021/jo0488309
  55. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2001, 66,3129-3132. https://doi.org/10.1021/jo010022j
  56. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J.G. J. Org. Chem. 2001, 66, 6571-6575. https://doi.org/10.1021/jo0101252
  57. Castro, E. A.; Angel,M.; Pavez, P.; Santos, J. G. J. Chem. Soc., Perkin Trans. 2 2001,12, 2351-2354.
  58. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330 https://doi.org/10.1002/chem.200800553
  59. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5,3539-3543. https://doi.org/10.1039/b712427a
  60. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005,3, 1240-1244. https://doi.org/10.1039/b500251f
  61. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  62. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  63. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  64. Nakata, K.; Fujio, M.; Nishimoto, K.; Tsuno, Y. J. Phys. Org.Chem. 2003, 16, 323-335. https://doi.org/10.1002/poc.621
  65. Fujio, M.; Rappoport, Z.; Uddin, H.J.; Kim, H. J.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2003, 76, 163-169. https://doi.org/10.1246/bcsj.76.163
  66. Fujio, M.; Uchida, M.; Okada, A.; Alam, M. A.; Fujiyama, R.;Siehl, H. U.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2005, 78, 1834-1842. https://doi.org/10.1246/bcsj.78.1834
  67. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama,R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091

Cited by

  1. Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Benzoates with Potassium Ethoxide in Anhydrous Ethanol: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2010, https://doi.org/10.5012/bkcs.2014.35.1.177