• 제목/요약/키워드: Hammett plot

검색결과 63건 처리시간 0.032초

A Kinetic Study on Michael-type Reactions of 1-(X-Substituted Phenyl)-2-propyn-1-ones with Amines: Effect of Amine Nature on Reactivity and Mechanism

  • Um, Ik-Hwan;Hwang, So-Jeong;Lee, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.767-771
    • /
    • 2008
  • Second-order rate constants have been measured spectrophotometrically for the Michael-type reaction of 1-(Xsubstituted phenyl)-2-propyn-1-ones (2a-f) with amines in $H_2O$ at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. A linear Brønsted-type plot is obtained with ${\beta}_{nuc}$ = 0.25 ${\pm}$ 0.02, a typical $\beta_{nuc}$ value for reactions which proceed through a stepwise mechanism with attack of amine on the electrophilic center being the rate-determining step. Secondary alicyclic amines are found to be more reactive than isobasic primary amines. The Hammett plot for the reactions of 2a-f with morpholine is not linear, i.e., the substrate with a strong electron-donating group (e.g., 4-MeO) exhibits a negative deviation from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ρ = 0.62 and r = 0.82. Thus, it has been proposed that the nonlinear Hammett plot is not due to a change in the ra te-determining step but due to ground-state stabilization through resonance interactions.

The Studies on Substituent and Kinetic Solvent Isotope Effect in Solvolyses of Phenyl Chloroformates

  • 구인선;이지선;양기열;강금덕;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권5호
    • /
    • pp.573-576
    • /
    • 1999
  • The rate constants and kinetic solvent isotope effects (KSIE, KMeOH/kMeOD) for solvolyses of para-substituted phenylchloroformates in CH3OH, CH3OD, H2O, D2O, 50% D2O-CH3OD were determined at 15.0 and 25.0℃ using conductometric method. Kinetic solvent isotope effects for the solvolyses of para-substituted phenyl chloroformates were 2.39-2.51, 2.21-2.28, and 1.67-1.69 for methanol, 50% aqueous methanol, and water, respectively. The slopes of Hammett plot for solvolysis of para-substituted phenyl chloroformates in methanol, 50% aqueous methanol, and water were 1.49, 1.17 and 0.89, respectively. The Hammett type plot of KSIE, log (KSIE) versus p, can be a useful mechanistic tool for solvolytic reactions. The slopes of such straight lines for para-substituted phenyl chloroformates are almost zero in methanol, 50% aqueous methanol, and water. It was shown that the reaction proceeds via an associative SN2 and/or general base catalysis addition-elimination (SAN) mechanism based on activation parameters, Hammett p values, and slopes of Hammett type plot of KS-IE.

Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides

  • Son, Yu-Jin;Kim, Eun-Hee;Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2455-2460
    • /
    • 2013
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the nucleophilic displacement reactions of 4-nitrophenyl X-substituted-cinnamates (4a-4e) and Y-substituted-phenyl cinnamates (5a-5e) with Z-substituted-phenoxide anions in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 4a-4e with 4-chlorophenoxide (4-$ClPhO^-$) consists of two intersecting straight lines, which might be taken as a change in the rate-determining step (RDS). However, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of substrates possessing an electron-withdrawing group in the cinnamoyl moiety through resonance interactions, since the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}X=0.89$ and r = 0.58. The Br${\o}$nsted-type plot for the reactions of 4-nitrophenyl cinnamate (4c) with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.76$. The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (5a-5d) with 4-chlorophenoxides (4-$ClPhO^-$) is also linear with ${\beta}_{lg}=-0.72$. The Hammett plot correlated with ${\sigma}^-$ constants for the reactions of 5a-5d results in a much better linear correlation than that correlated with ${\sigma}^o$ constants, indicating that a partial negative charge develops on the O atom of the leaving aryloxide. Thus, the reactions have been concluded to proceed through a concerted mechanism.

Kinetic Study on Aminolysis of Y-Substituted-Phenyl X-Substituted-Benzoates: Effects of Substituents X and Y on Reactivity and Reaction Mechanism

  • Jeon, Seong Hoon;Kim, Hyun Soo;Han, Young Joon;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.471-476
    • /
    • 2014
  • A kinetic study on aminolysis of 2-chloro-4-nitrophenyl X-substituted-benzoates (2a-k) in 80 mol % $H_2O/_20mol%$ DMSO at $25.0^{\circ}C$ is reported. The Br${\emptyset}$nsted-type plot for the reactions of 2-chloro-4-nitrophenyl benzoate (2g) with a series of cyclic secondary amines curves downward (e.g., ${\beta}_1=0.25$, ${\beta}_2=0.85$ and $pK_a^o=10.3$), which is typical of reactions reported to proceed through a stepwise mechanism with a change in ratedetermining step (RDS). The Hammett plot for the reactions of 2a-k with piperidine consists of two intersecting straight lines, while the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}_X=1.15$ and r = 0.59. Thus, it has been concluded that the nonlinear Hammett plot is not due to a change in RDS but is caused by stabilization of substrates through resonance interactions between the electron-donating substituent and the C=O bond. Substrates possessing a substituent at the 2-position of the leaving aryloxide deviate negatively from the curved Br${\emptyset}$nsted-type plot for the reactions of Y-substituted-phenyl benzoates (3a-i), implying that the steric hindrance exerted by the substituent at the 2-position is an important factor which governs the reactivity of Y-substituted-phenyl benzoates.

Kinetic Study on Aminolysis of 4-Chloro-2-Nitrophenyl X-Substituted-Benzoates in Acetonitrile and in 80 mol % H2O/20 mol % DMSO: Effect of Medium on Reactivity and Reaction Mechanism

  • Kim, Ha-Ram;Um, Tae-Il;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1128-1132
    • /
    • 2014
  • A kinetic study on aminolysis of 4-chloro-2-nitrophenyl X-substituted-benzoates (6a-i) in MeCN is reported. The Hammett plot for the reactions of 6a-i with piperidine consists of two intersecting straight lines, while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}_X$ = 1.03 and r = 0.78. The nonlinear Hammett plot is not due to a change in rate-determining step (RDS) but is caused by the resonance stabilization of substrates possessing an electron-donating group in the benzoyl moiety. The Br${\phi}$nsted-type plot for the reactions of 4-chloro-2-nitrophenyl benzoate (6e) with a series of cyclic secondary amines is linear with ${\beta}_{nuc}$ = 0.69, an upper limit for reactions reported to proceed through a concerted mechanism. The aminolysis of 6e in aqueous medium has previously been reported to proceed through a stepwise mechanism with a change in RDS on the basis of a curved Br${\phi}$nsted-type plot. It has been concluded that instability of the zwitterionic tetrahedral intermediate ($T^{\pm}$) in MeCN forces the reaction to proceed through a concerted mechanism. This is further supported by the kinetic result that the amines used in this study are less reactive in MeCN than in $H_2O$, although they are more basic in MeCN over 7 $pK_a$ units.

Kinetic Study on Nucleophilic Substitution Reactions of 4-Chloro-2-nitrophenyl X-Substituted-benzoates with Cyclic Secondary Amines: Effect of Substituent X on Reactivity and Reaction Mechanism

  • Jeon, Seong Hoon;Kim, Hyun Soo;Han, Young Joon;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2983-2988
    • /
    • 2013
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-chloro-2-nitrophenyl X-substituted-benzoates (1a-1h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 1a-1h with piperidine consists of two intersecting straight lines, while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}_X $ = 1.25 and r = 0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step (RDS) but is caused by ground-state stabilization through resonance interactions for substrates possessing an electron-withdrawing group in the benzoyl moiety. The Br${\o}$nsted-type plot for the reactions of 4-chloro-2-nitrophenyl benzoate (1d) with a series of cyclic secondary amines curves downward with ${\beta}_2$ = 0.85, ${\beta}_1$ = 0.24, and $pK_a{^o}$ = 10.5, implying that a change in RDS occurs from the $k_2$ step to the $k_1$ process as the $pK_a$ of the conjugate acid of the amine exceeds 10.5. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio associated with the reaction of 1d reveals that $k_2$ is dependent on the amine basicity, which is contrary to generally held views.

Kinetics and Mechanism of Alkaline Hydrolysis of [(Methoxy)(p-substituted styryl)-carbene] Pentacarbonyl Chromium(0) Complexes in Aqueous Acetonitrile

  • Shin, Gap-Cheol;Hwang, Jae-Young;Yang, Ki-Yull;Koo, In-Sun;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1981-1985
    • /
    • 2005
  • Kinetic studies have been performed for alkaline hydrolysis of a series of [(methoxy)(p-substituted styryl)carbene]pentacarbonyl chromium(0) complexes ($(CO)_5$Cr=$C(OCH_3)CH=CHC_6H_4X$, X = p-$OCH_3$, p-$CH_3$, H, p-Cl, p-$NO_2$). Second-order rate constants $(k_{{OH}^-})$ for the alkaline hydrolysis in 50% acetonitrile-water(v/v) were determined spectrophotometrically at various temperatures. At a low pH region (pH < 7.5), the observed rate constant $(k_{obs})$ remained constant with a small value, while in a high pH region (pH > 9.5), $k_{obs}$ increases linearly with increasing the pH of the medium. The second-order rate constants $(k_{{OH}^-})$ increase as the substituent X changes from a strong electron donating group to a strong electron withdrawing group. The Hammett plot obtained for the alkaline hydrolysis is consisted of two intersecting straight lines. The nonlinear Hammett plot might be interpreted as a change in the rate-determining step. However, the fact that the corresponding Yukawa-Tsuno plot is linear with $\rho$ and r values of 0.71 and 1.14, respectively indicates that the nonlinear Hammett plot is not due to a change in the rate-determing step but is due to ground-state stabilization through resonance interaction. The positive $\rho$ value suggests that nucleophilic attack by $OH^-$ to form a tetrahedral addition intermediate is the rate-determining step. The large negative ${\Delta}S^\neq$ value determined in the present system is consistent with the proposed mechanism.

Reactions of 4-Nitrophenyl 2-Thiophenecarboxylates with R2NH/R2NH2+ in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength

  • Pyun, Sang Yong;Cho, Bong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2036-2040
    • /
    • 2013
  • Reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a-e) with $R_2NH/R_2NH{_2}^+$ in 20 mol % DMSO (aq) have been studied kinetically. The $2^{nd}$ order kinetics, ${\beta}_{nuc}$ = 0.88-0.98, and linear Hammett and Yukawa-Tsuno plots observed for these reactions indicate an addition-elimination mechanism in which the $2^{nd}$ step is rate limiting. The ${\beta}_{nuc}$ value increased with a stronger electron-withdrawing 5-thienyl substituent, the Hammett plots are linear except for X = MeO, and Yukawa-Tsuno plots are linear with ${\rho}$ = 0.79-1.32 and r = 0.28-0.93, respectively. The ${\rho}$ value increased and r value decreased with a stronger nucleophile, indicating an increase in the electron density at the C=O bond and a decrease in the resonance demand. These results have been interpreted with enhanced N-C bond formation in the transition state with the reactivity increase.

Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates

  • Um, Ik-Hwan;Kim, Eun-Hee;Han, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.580-584
    • /
    • 2008
  • Second-order rate constants (kN) have been measured spectrophotometrically for reactions of Y-substituted phenyl benzoates (1a-h) with azide ion (N3) in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the azidolysis exhibits a downward curvature, i.e., the slope (b lg) changes from 0.97 to 0.20 as the basicity of the leaving group decreases. The pKao (defined as the pKa at the center of the Brnsted curvature) is 4.8, which is practically identical to the pKa of the conjugate acid of N3 ion (4.73). Hammett plots correlated with s o and s constants exhibit highly scattered points for the azidolysis. On the contrary, the corresponding Yukawa-Tsuno plot results in an excellent linear correlation with r = 2.45 and r = 0.40, indicating that the leaving group departs in the rate-determining step. The curved Brnsted-type plot has been interpreted as a change in the rate-determining step in a stepwise mechanism. The microscopic rate constants (k1 and k2/k1 ratio) have been calculated for the azidolysis and found to be consistent with the proposed mechanism.

A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism

  • Lee, Jong-Pal;Bae, Ae-Ri;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3588-3592
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2-pyridyl X-substituted benzoates 8a-e with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 8a-e are slightly smaller than the corresponding reactions of 4-nitrophenyl X-substituted benzoates 1a-e (e.g., $kN^{1a-e}/k_N^{8a-e}$ = 1.1 ~ 3.1), although 2-pyridinolate in 8a-e is ca. 4.5 $pK_a$ units more basic than 4-nitrophenolate in 1a-e. The Br$\o$nsted-type plot for the aminolysis of 8c (X = H) is linear with $\beta_{nuc}$ = 0.77 and $R^2$ = 0.991 (Figure 1), which is typical for reactions reported previously to proceed through a stepwise mechanism with breakdown of a zwitterionic tetrahedral intermediate $T^{\pm}$ being the rate-determining step (RDS), e.g., aminolysis of 4-nitrophenyl benzoate 1c. The Hammett plot for the reactions of 8a-e with piperidine consists of two intersecting straight lines (Figure 2), i.e., $\rho$ = 1.71 for substrates possessing an electron-donating group (EDG) while $\rho$ = 0.86 for those bearing an electron-withdrawing group (EWG). Traditionally, such a nonlinear Hammett plot has been interpreted as a change in RDS upon changing substituent X in the benzoyl moiety. However, it has been proposed that the nonlinear Hammett is not due to a change in RDS since the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with $\rho$ = 0.85 and r = 0.62 ($R^2$ = 0.995, Figure 3). Stabilization of substrates 8a-e in the ground state has been concluded to be responsible for the nonlinear Hammett plot.