GRADIENT ESTIMATE OF HEAT EQUATION FOR HARMONIC MAP ON NONCOMPACT MANIFOLDS

  • Received : 2010.02.11
  • Accepted : 2010.05.17
  • Published : 2010.09.30

Abstract

aSuppose that (M, g) is a complete Riemannian manifold with Ricci curvature bounded below by -K < 0 and (N, $\bar{b}$) is a complete Riemannian manifold with sectional curvature bounded above by a constant $\mu$ > 0. Let u : $M{\times}[0,\;{\infty}]{\rightarrow}B_{\tau}(p)$ is a heat equation for harmonic map. We estimate the energy density of u.

Keywords

References

  1. P. Aviles, H. I. Choi and M. Micallef, Boundary Behavior of Harmonic Maps on Non-smooth Domains and Complete Negatively Curved Manifolds, J. of Functional Analysis, 99 (1986), 293-331.
  2. S. Cheng, The Liouville Theorem for Harmonic Maps, Prc. Sym. Pure Math 36 (1980), 147-151.
  3. H. I. Choi, On the Liouville Theorem for Harmonic Maps, Proc. A.M.S 85 (1982), 91-94. https://doi.org/10.1090/S0002-9939-1982-0647905-3
  4. D. Chi, H, Choi and H. Kim, Heat Equation for Harmonic Maps of the Compactificaion of Complete Manifolds, J. Geom. Anal 8 no.4 (1998), 515-531. https://doi.org/10.1007/BF02921710
  5. H. Donnelly and P. Li, Heat Equation and Compactifications of Complete Riemannian Manifolds, Duke Math J. 51 (1984), 667-673. https://doi.org/10.1215/S0012-7094-84-05131-7
  6. P. Eberlein and B. O'Neill, Visibility Manifolds, Pacific J. Math. 6 (1973), 45-109.
  7. R. S. Hamilton, A Matrix Harnack Estimate for the Heat Equation, Comm. Anal. Geom., 1 (1993), 113-126.
  8. P. Hsu, Heat Semigroup on a Complete Riemannian Manifold, Annals of Prob. 17 (1989), 1248-1254. https://doi.org/10.1214/aop/1176991267
  9. P. Li and S. T. Yau, On he Parabolic Kernel of the Schroedinger operator, Acta Math. 156 (1986), 153-201. https://doi.org/10.1007/BF02399203
  10. P. Li and L.-F. Tam, The Heat Equation and Harmonic Maps of Complete Manifolds, Invent. Math. 105 (1991), 1-46. https://doi.org/10.1007/BF01232256
  11. G. G. Liao and L.-F. Tam, On the Heat Equation for Harmonic Maps from Non-compact Manifolds, Pacific J. Math. 153 no.1 (1992), 129-145. https://doi.org/10.2140/pjm.1992.153.129