References
- J.Chen ; A new family of expontial iteration methods with quadratic convergence of both diameters and points for enclosing zeros of nonlinear equations Mathematical and Computer Modelling 45(2007) 544-552. https://doi.org/10.1016/j.mcm.2006.07.003
- J.Chen ; New modified regula falsi method for nonlinear equations , Appl. Math.and compu. 184(2007) ,965-971. https://doi.org/10.1016/j.amc.2006.05.203
- J.Chen and Z.Shen ; On third-order convergent regula falsi methods , Appl. Math.and compu.188(2007),1592-1596. https://doi.org/10.1016/j.amc.2006.11.030
- J.Chen and W. Li; An improved exponential regula falsi methods with quadratic convergence of both diameter and point for solving nonlinear equations, Appl. Numer.Math.57(2007),80-88. D.K. https://doi.org/10.1016/j.apnum.2006.01.001
- Gupta S.K. Parhi; An improved class of regula falsi methods of third order for solving nonlinear equations in R, J Appl Math Comput,(2009).
- P.K.Parida,D.K.Gupta ;A cubic convergent iterative method for enclosing simple roots of nonlinear equations , Appl. Math.and compu. 187(2007) ,1544-1551. https://doi.org/10.1016/j.amc.2006.09.071
- X. Wu and D. Fu; New higher-order convergence iteration methods without employing derivatives for solving nonlinear equations, Appl. Math.and compu.41(2001) 489-495. https://doi.org/10.1016/S0898-1221(00)00290-X
- Y. Zhu and X. Wu; A free-derivative iteration method of order three having convergence of both point and interval for nonlinear equations, Appl. Math. Comput. 137(2003) 49-55. https://doi.org/10.1016/S0096-3003(02)00029-2
- X. Wu and H. Wu; On a class of quadratic convergence iteration formulae without derivatives, Appl. Math. Comput. 107(2000) 77-80. https://doi.org/10.1016/S0096-3003(98)10009-7
- X.Y.Wu,Z.H.shen and J.L.Xia; An improved regula falsi method with quadratic convergence of both diameter and point for enclosing simple zeros of nonlinear equations. Appl. Math. Comput. 144(2003) 381-388. https://doi.org/10.1016/S0096-3003(02)00414-9
- K.E. Atkinson, An Introduction to Numerical Analysis, second ed., John Wiley Sons Inc, 1989.