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GRADIENT ESTIMATE OF HEAT EQUATION FOR
HARMONIC MAP ON NONCOMPACT MANIFOLDS'

HYUN JUNG KIM*

ABSTRACT. aSuppose that (M, g) is a complete Riemannian manifold with
Ricci curvature bounded below by —K < 0 and (N,g) is a complete Rie-
mannian manifold with sectional curvature bounded above by a constant
u>0.Let u: M X [0,00) = Br(p) is a heat equation for harmonic map.
We estimate the energy density of u.
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1. Introduction

Let M and N be a complete Riemannian manifolds of dimension m and
n respectively, and let {2} and {y’} be the local coordinates of M and N,
respectively. Let uw : M x [0,00) — N be a map which is represented by u =
(ul, - ,u™) in terms of the above local coordinates. We say u satisfies the heat
equation for harmonic map if it is a solution of the following nonlinear parabolic
system:
o’ ou

(A _ %)ul(x,t) _ go‘ﬁ(x) ;k(u(g;’t))%(z,t)w(x,t) (1)

fore=1,---,m.

In our paper, we give an energy density’s estimate, that is, a gradient estimate
for the solution of (1). When the target manifold N is the real space R, we
have several types of gradient estimate. In [9], Li and Yau proved the gradient

estimate for the positive solution of the heat equation. Let the Ricci curvature
of M be bounded below by a —K < 0. Let w : M x [to — T,ts) — R is a
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positive solution of the heat equation. Let a > 0 and T" > 0. Then for any
(iL'ﬂf) € B%({E(]) X [t(] — %,t()} and o > 1,
ul? u ¢
PR
In [7]. Hamilton proved when M is a compact manifold with the Ricci curva-
ture bounded below by a constant —K < 0. Let u be a positive solution of the
heat equation with u < M on M x (0, 00).

Then
2
Vol <1 +2K) M
u t u

—I—%—i—cn[(.

We prove the local and global gradient estimate for the solution of (1). Let
p(p, q) be a distance in N between two points p,q € N.

Theorem 1. Suppose that (M, g) is a complete Riemannian manifold with Ricci
curvature bounded below by —K < 0 and (N,9g) is a complete Riemannian man-
ifold with sectional curvature bounded above by a constant p > 0. Assume that
T < min{ﬁ, injectivity radius of N at p}. Let u: M x [0,00) — B.(p) is a
solution of (1) .
i) Let a >0 and T > 0. Then for any (x,t) € Ba(xo) x (0,7
T 1 KT

e(u)(z,t) < C <a2t + ; + . ) ,
for a positive constant C > 0 depending only on the dimension n of M and
SUP s xjo,1) P(u(T, 1), p) < 00
it) for any (x,t) € M x (0, 00]

C
e(u)(m,t) < ?’

where C'° > 0 is a constant depending only on the dimension n of M and
SUP p (0,7 p(u(z,t),p) < 0.

Now we give some notations that we use for the proof of Theorem. Let
u: M x [0,00) — N be a smooth map. Choose an orthonormal frame {e,, %}
in a neighborhood of (z,t) € M x [0,00) and an local orthonormal frame {f;}
in a neighborhood of u(z,t) € N. Let {04, dt} and {w;} be the dual coframes of
{€a, %} and {f;} respectively. Let {05} and {w;;} be the connection forms of
M and N respectively.

Denote d = dps + %dt to be the exterior differentiation on M x [0, 00) where
dps is the exterior differentiation on M. Define u;, by

uwrw; = Z WinBa + Ui dt.
«
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Define the covariant derivative ujng of u;q by
Zumg% + Ujardt = du;o — Z Ujal wj; — Z u;gbgon.
B J B

Since du;o = dptia + Uinedt, we have
Z uia,ﬁgﬁ = dpMUia — Z Ujau*Oin — Zuwﬂga.
B J B

It is well known that the harmonic map heat equation (1) is equivalent to
Uit = Ujaa,
for i = 1,--- ,n. We define the energy density function e(u) of u by e(u) =
i U2, Then an easy computation gives the following Bochner type formula:

1 0
§(A — a)e(u) = Z uzzaﬁ — Z Rijklumujgukaum + Z Kalgumum,
i,a,3 i,5,k,l,a, 8 a,B,1

where R;ji; is the curvature tensor of N and K,z is the Ricci tensor of M.

2. The Proof of Main Theorem

The proof given here is a modification of the method of [4]. First scaling the
metric of N, we may assume without loss of generality that p = 1. Let p(p, q)
denote the intrinsic distance function on N between p and ¢. Define

o(w)(z,t) = 1 — cos(p(u(z, 1), p)).

Since the image of w on M x [0, T] contained in B (p), we have cos(p(u(z, t),p)) <
cosT < 1. Let By (o) be the closed geodesic ball of radius a > 0 and center z¢ in
M and let 7 be the distance function in M from g € M. Let a > 0 and T' > 0 and
b= 2sup sy 0,71 ¢(u)(x,t) <b.. Consider the function ® : B,(zo) x [0,7] = R
defined by
t(a? = %) %e(u)
(b= ¢(u))’
Let (z1,t1) be a point in B,(xg) x [0,T] such that
(a2 — ~2)2

)
Ba(wo)x[0.1] (b — p(u))?
Since ®(z,0) = 0 for z € By(zp) and ®(x,t) = 0 for x € IB,(xg), we get the

maximum point (z1,t1) of ® in B,(zg) x (0,T].
At (21,t1) € Ba(xo) x (0,T], ® has the following properties :

(I>(x17t1) =

Alog ®(z1,t1) <0, dlog®(z1,t1) =0 and %log d(x1,t1) > 0.
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Rewriting these at (z1,t1), we have
—2dy? n de(u) 2d¢(u)
(@ =92 = e(w)  (b—o(u))
AP 2P (A= e
@ @t ew
lde(u)]?  2(A = Z)p(u)  2|dp(u)|? 1

e(u)? (b —¢(u)) (b—o(w)*

A3 " u2) =2 tiattias <203 u2)2() ud,p)%.

Putting (4) to the Bochner type formula (2) , we get

9 1]de(w)?

(&= gp)elw) = 5

By the Hessian comparison, we have for some constant C7; > 0

0 =

Note that

2¢%(u) — 2Ke(u).

(= D)00) > (cosple(w),  and  A? < C1(1+ K)

Putting (2),(5) and (6) to (3), we have
1 —289°  Aldy?P A|dy?||dep(u)|
P2 TiTE @ @ ep
2cosp
—2K + = ¢(u))e(u).

Letting by = sup ;0,77 #(u), we get that

] B B 2cosp 1-0

belg),T] (b — ¢(u)(x,t)) = by and (-2 + 5o ¢(u)) b— o) > 0.
Using |dé(u)| < sin p(u)+/e(u), we have
1 2C, (1 + Kv) 16+2
0 = —;—2[(— a2 — 2 _(azf,yz)z
8 sin p(u) 1-5b
T - o) Y i ™

As in [4],we have a constant Co > 0 such that
e(u)(z1,t1)
67 sin? plu) 16— 6(w)) | 2K (b 6(w)

< (Cymax { (1—0b)2(a%2 —~42)2" t(1—b) )

L2+ Kb 6w) | 1653 ¢(w)
C-0@ =7 A-ba -7 [

(6)
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Note that sin® p(u) = 1 — cos? p(u) < 2¢(u) < 2by. If (z,t) € Ba(xo) x (0,77,
Ha® = 7*)e(w)
(G o

— ¢(u))?

t(a® =) %)\

< (MG o
max 128921 by (a> —~°)? 2ty K (a® —»?)?

= O {u—wvw—wwV’u—w@—wm>*u—ww—¢w»

2t1(1 4+ Kv)(a® —2) N 16t;~2 } |

A-b)b—ow)  (1-b)b—d(u) [
32a*T  9a*  9TKa* 3(1+4aK)a>T 4T a?

= G max{ B 16h | 16b % b } :

for some constants C5 > 0 and C4 > 0. Therefore we have for any (z,t) €
Bg (o) x (0,77,

2T 2 KbT 1 K)b’T 2T
e(u)(m,t)SCmax{ b b b (1+aK)b b }

B2a2t Bt + Bt * a2pt * a?pt
Letting b = 12 we get 48 = (1 — b;)? and
1+0\> /T 1 T
< LKD),
e(u)(z,t) _C<1—b1) ( —|—t+ t)

So we get the (i) of Main Theorem.
Since the lower bound of Ricci curvature of M is 0, we have for any a > 0
and T > 0, and for any (z,t) € B,(xo) x (0,77,

e(u)(z, 1) < C’max{T + 1}.

a?t t

As a — oo, the (ii) in Main Theorem is proved.
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