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GRADIENT ESTIMATE OF HEAT EQUATION FOR

HARMONIC MAP ON NONCOMPACT MANIFOLDS†

HYUN JUNG KIM∗

Abstract. aSuppose that (M, g) is a complete Riemannian manifold with
Ricci curvature bounded below by −K < 0 and (N, g) is a complete Rie-
mannian manifold with sectional curvature bounded above by a constant
µ > 0. Let u : M × [0,∞) → Bτ (p) is a heat equation for harmonic map.
We estimate the energy density of u.
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1. Introduction

Let M and N be a complete Riemannian manifolds of dimension m and
n respectively, and let {xα} and {yi} be the local coordinates of M and N,
respectively. Let u : M × [0,∞) → N be a map which is represented by u =
(u1, · · · , un) in terms of the above local coordinates. We say u satisfies the heat
equation for harmonic map if it is a solution of the following nonlinear parabolic
system:

(∆− ∂

∂t
)ui(x, t) = gαβ(x)Γi

jk(u(x, t))
∂uj

∂xα
(x, t)

∂uk

∂xβ
(x, t) (1)

for i = 1, · · · ,m.
In our paper, we give an energy density’s estimate, that is, a gradient estimate

for the solution of (1). When the target manifold N is the real space R, we
have several types of gradient estimate. In [9], Li and Yau proved the gradient
estimate for the positive solution of the heat equation. Let the Ricci curvature
of M be bounded below by a −K < 0. Let u : M × [t0 − T, t0) → R is a
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positive solution of the heat equation. Let a > 0 and T > 0. Then for any
(x, t) ∈ B a

2
(x0)× [t0 − T

2 , t0] and α > 1,

|∇u|2
u2

− α
ut

u
≤ cn

R2
+

cn
T

+ cnK.

In [7]. Hamilton proved when M is a compact manifold with the Ricci curva-
ture bounded below by a constant −K < 0. Let u be a positive solution of the
heat equation with u ≤ M on M × (0,∞).

Then
|∇u|2
u2

≤
(
1

t
+ 2K

)
ln

M

u
.

We prove the local and global gradient estimate for the solution of (1). Let
ρ(p, q) be a distance in N between two points p, q ∈ N.

Theorem 1. Suppose that (M, g) is a complete Riemannian manifold with Ricci
curvature bounded below by −K < 0 and (N, g) is a complete Riemannian man-
ifold with sectional curvature bounded above by a constant µ > 0. Assume that
τ < min{ π

2
√
µ , injectivity radius of N at p}. Let u : M × [0,∞) → Bτ (p) is a

solution of (1) .
i) Let a > 0 and T > 0. Then for any (x, t) ∈ B a

2
(x0)× (0, T ]

e(u)(x, t) ≤ C

(
T

a2t
+

1

t
+

KT

t

)
,

for a positive constant C > 0 depending only on the dimension n of M and
supM×[0,T ] ρ(u(x, t), p) < ∞.

ii) for any (x, t) ∈ M × (0,∞]

e(u)(x, t) ≤ C

t
,

where C > 0 is a constant depending only on the dimension n of M and
supM×[0,T ] ρ(u(x, t), p) < ∞.

Now we give some notations that we use for the proof of Theorem. Let
u : M × [0,∞) −→ N be a smooth map. Choose an orthonormal frame {eα, ∂

∂t}
in a neighborhood of (x, t) ∈ M × [0,∞) and an local orthonormal frame {fi}
in a neighborhood of u(x, t) ∈ N . Let {θα, dt} and {ωi} be the dual coframes of
{eα, ∂

∂t} and {fi} respectively. Let {θαβ} and {ωij} be the connection forms of
M and N respectively.

Denote d = dM + ∂
∂tdt to be the exterior differentiation on M × [0,∞) where

dM is the exterior differentiation on M. Define uiα by

u∗ωi =
∑
α

uiαθα + uitdt.
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Define the covariant derivative uiαβ of uiα by
∑

β

uiαβθβ + uiαtdt = duiα −
∑

j

ujαu
∗ωji −

∑

β

uiβθβα.

Since duiα = dMuiα + uiαtdt, we have
∑

β

uiαβθβ = dMuiα −
∑

j

ujαu
∗ωji −

∑

β

uiβθβα.

It is well known that the harmonic map heat equation (1) is equivalent to

uit = uiαα,

for i = 1, · · · , n. We define the energy density function e(u) of u by e(u) =∑
iα u2

iα. Then an easy computation gives the following Bochner type formula:

1

2
(∆− ∂

∂t
)e(u) =

∑

i,α,β

u2
iαβ −

∑

i,j,k,l,α,β

Rijkluiαujβukαulβ +
∑

α,β,i

Kαβuiαuiβ ,

where Rijkl is the curvature tensor of N and Kαβ is the Ricci tensor of M .

2. The Proof of Main Theorem

The proof given here is a modification of the method of [4]. First scaling the
metric of N, we may assume without loss of generality that µ = 1. Let ρ(p, q)
denote the intrinsic distance function on N between p and q. Define

φ(u)(x, t) = 1− cos(ρ(u(x, t), p)).

Since the image of u onM×[0, T ] contained in Bτ (p), we have cos(ρ(u(x, t), p)) <
cos τ < 1. Let Ba(x0) be the closed geodesic ball of radius a > 0 and center x0 in
M and let γ be the distance function inM from x0 ∈ M. Let a > 0 and T > 0 and
b = 2 supM×(0,T ] φ(u)(x, t) < b.. Consider the function Φ : Ba(x0) × [0, T ] → R
defined by

Φ =
t (a2 − γ2)2e(u)

(b− φ(u))
2 .

Let (x1, t1) be a point in Ba(x0)× [0, T ] such that

Φ(x1, t1) = max
Ba(x0)×[0,T ]

t (a2 − γ2)2e(u)

(b− φ(u))2
.

Since Φ(x, 0) = 0 for x ∈ Ba(x0) and Φ(x, t) = 0 for x ∈ ∂Ba(x0), we get the
maximum point (x1, t1) of Φ in Ba(x0)× (0, T ].

At (x1, t1) ∈ Ba(x0)× (0, T ], Φ has the following properties :

∆ logΦ(x1, t1) ≤ 0, d log Φ(x1, t1) = 0 and
∂

∂t
log Φ(x1, t1) ≥ 0.
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Rewriting these at (x1, t1), we have

0 =
−2dγ2

(a2 − γ2)
+

de(u)

e(u)
+

2dφ(u)

(b− φ(u))
(2)

0 ≥ −2∆γ2

(a2 − γ2)
+

−2|dγ2|2
(a2 − γ2)2

+
(∆− ∂

∂t )e(u)

e(u)
(3)

−|de(u)|2
e(u)2

+
2(∆− ∂

∂t )φ(u)

(b− φ(u))
+

2|dφ(u)|2
(b− φ(u))2

− 1

t
.

Note that

d(
∑

u2
iα) = 2

∑
uiαuiαβ ≤ 2(

∑
u2
iα)

1
2 (
∑

u2
iαβ)

1
2 . (4)

Putting (4) to the Bochner type formula (2) , we get

(∆− ∂

∂t
)e(u) ≥ 1

2

|de(u)|2
e(u)

− 2e2(u)− 2Ke(u). (5)

By the Hessian comparison, we have for some constant C1 > 0

(∆− ∂

∂t
)(φ(u)) ≥ (cos ρ)e(u), and ∆γ2 ≤ C1(1 +Kγ). (6)

Putting (2),(5) and (6) to (3), we have

0 ≥ −1

t
+

−2∆γ2

a2 − γ2
− 4|dγ2|2

(a2 − γ2)2
− 4|dγ2||dφ(u)|

(a2 − γ2)(b− φ(u))2
− 2e(u)

−2K +
2 cos ρ

(b− φ(u))
e(u).

Letting b1 = supM×[0,T ] φ(u), we get that

sup
M×(0,T ]

(b− φ(u)(x, t)) = b1 and (−2 +
2 cos ρ

b− φ(u)
) >

1− b

b− φ(u)
> 0.

Using |dφ(u)| ≤ sin ρ(u)
√
e(u), we have

0 ≥ −1

t
− 2K − 2C1(1 +Kγ)

a2 − γ2
− 16γ2

(a2 − γ2)2

− 8γ sin ρ(u)

(a2 − γ2)(b− φ(u))

√
e(u) +

1− b

b− φ(u)
e(u).

As in [4],we have a constant C2 > 0 such that

e(u)(x1, t1)

≤ C2 max

{
64γ2 sin2 ρ(u)

(1− b)2(a2 − γ2)2
,
1(b− φ(u))

t1(1− b)
+

2K(b− φ(u))

(1− b)

+
2(1 +K γ)(b− φ(u))

(1− b)(a2 − γ2)
+

16γ2(b− φ(u))

(1− b)(a2 − γ2)2

}
.
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Note that sin2 ρ(u) = 1− cos2 ρ(u) ≤ 2φ(u) ≤ 2b1. If (x, t) ∈ B a
2
(x0)× (0, T ],

{
t (a2 − γ2)2e(u)

(b− φ(u))2

}
(x, t)

≤
{
t1(a

2 − γ2)2e(u)

(b− φ(u))2

}
(x1, t1)

≤ C3 max

{
128γ2t1b1

(1− b)2(b− φ(u))2
,

(a2 − γ2)2

(1− b)(b− φ(u))
+

2t1 K(a2 − γ2)2

(1− b)(b− φ(u))

+
2t1(1 +Kγ)(a2 − γ2)

(1− b)(b− φ(u))
+

16t1γ
2

(1− b)(b− φ(u))

}
|(x1,t1)

≤ C4 max

{
32a2T

b21
,
9a4

16b1
+

9TK a4

16b1
+

3(1 + aK)a2 T

2b1
+

4T a2

b1

}
,

for some constants C3 > 0 and C4 > 0. Therefore we have for any (x, t) ∈
B a

2
(x0)× (0, T ],

e(u)(x, t) ≤ Cmax

{
b2T

β2a2t
,

b2

βt
+

Kb2T

βt
+

(1 + aK)b2T

a2βt
+

b2T

a2βt

}
.

Letting b = 1+b1
2 , we get 4β = (1− b1)

2 and

e(u)(x, t) ≤ C

(
1 + b1
1− b1

)2 (
T

a2t
+

1

t
+K

T

t

)
.

So we get the (i) of Main Theorem.
Since the lower bound of Ricci curvature of M is 0, we have for any a > 0

and T > 0, and for any (x, t) ∈ Ba(x0)× (0, T ],

e(u)(x, t) ≤ Cmax

{
T

a2t
+

1

t

}
.

As a → ∞, the (ii) in Main Theorem is proved.
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