DOI QR코드

DOI QR Code

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi (Department of Chemistry, Korea University) ;
  • Yi, Cheol-Woo (Department of Chemistry and Institute of Basic Science, Sungshin Women's University) ;
  • Liang, Lianhua (Department of Chemistry, Korea University) ;
  • Kim, Keon (Department of Chemistry, Korea University)
  • Published : 2010.02.20

Abstract

The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

Keywords

References

  1. Song, D.; Ikuta, H.; Uchida, T.; Wakihara, M. Solid State Ionics 1999, 117, 151. https://doi.org/10.1016/S0167-2738(98)00258-6
  2. Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnon, W. R.; Colson, S. J. Electrochem. Soc. 1991, 138, 2859. https://doi.org/10.1149/1.2085330
  3. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Mater. Res. Bull. 1983, 18, 461. https://doi.org/10.1016/0025-5408(83)90138-1
  4. Aoshima, T.; Okahara, K.; Kiyohara, C.; Shizuka, K. Mechanisms of Manganese Spinels Dissolution and Capacity Fade at High Temperature; 10 th International Meeting on Lithium Batteries, 2000, Como, Italy.
  5. Jang, D. H.; Oh, S. M. Electrochim. Acta 1998, 43, 1023. https://doi.org/10.1016/S0013-4686(97)00265-X
  6. Gummow, R. J.; Dekock, A.; Thackeray, M. M. Solid State Ionics 1994, 69, 59. https://doi.org/10.1016/0167-2738(94)90450-2
  7. Yamada, A.; Tanaka, M.; Tanaka, K.; Sekai, K. Jahn-Teller Instability in Spinel Li-Mn-O; 9th International Meeting on Lithium Batteries, 1998, Edinburgh, Scotland.
  8. Hosoya, M.; Ikuta, H.; Wakihara, M. Solid State Ionics 1998, 111, 153. https://doi.org/10.1016/S0167-2738(98)00156-8
  9. Okada, M.; Lee, Y. S.; Yoshio, M. J. Power Sources 2000, 90, 196. https://doi.org/10.1016/S0378-7753(00)00410-9
  10. Deng, B. H.; Nakamura, H.; Zhang, Q.; Yoshio, M.; Xia, Y. Y. Electrochim. Acta 2004, 49, 1823. https://doi.org/10.1016/j.electacta.2003.11.032
  11. Krins, N.; Hatert, F.; Traina, K.; Dusoulier, L.; Molenberg, I.; Fagnard, J. F.; Vanderbemden, P.; Rulmont, A.; Cloots, R.; Vertruyen, B. Solid State Ionics 2006, 177, 1033. https://doi.org/10.1016/j.ssi.2006.04.001
  12. Amatucci, G. G.; Blyr, A.; Sigala, C.; Alfonse, P.; Tarascon, J. M. Solid State Ionics 1997, 104, 13. https://doi.org/10.1016/S0167-2738(97)00407-4
  13. Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem. Commun. 2003, 5, 940. https://doi.org/10.1016/j.elecom.2003.08.012
  14. Park, S. C.; Kim, Y. M.; Kang, Y. M.; Kim, K. T.; Lee, P. S.; Lee, J. Y. J. Power Sources 2001, 103, 86. https://doi.org/10.1016/S0378-7753(01)00832-1
  15. Liu, D. Q.; Liu, X. Q.; He, Z. Z. J. Alloy. Compd. 2007, 436, 387. https://doi.org/10.1016/j.jallcom.2006.07.058
  16. Tu, J.; Zhao, X. B.; Xie, J.; Cao, G. S.; Zhuang, D. G.; Zhu, T. J.; Tu, J. P. J. Alloy. Compd. 2007, 432, 313. https://doi.org/10.1016/j.jallcom.2006.06.016
  17. Ha, H. W.; Yun, N. J.; Kim, K. Electrochim. Acta 2007, 52, 3236. https://doi.org/10.1016/j.electacta.2006.09.066
  18. Liu, Z. L.; Yu, A. S.; Lee, J. Y. J. Power Sources 1998, 74, 228. https://doi.org/10.1016/S0378-7753(98)00071-8
  19. Arbizzani, C.; Mastragostino, M.; Rossi, M. Electrochem. Commun. 2002, 4, 545. https://doi.org/10.1016/S1388-2481(02)00368-5
  20. Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; John, R.; Rumble, J. NIST X-ray Photoelectron Spectroscopy Database.
  21. Ramana, C. V.; Massot, M.; Julier, C. M. Surf. Interface Anal. 2005, 37, 412. https://doi.org/10.1002/sia.2022
  22. Li, X. F.; Xu, Y. L. Appl. Surf. Sci. 2007, 253, 8592. https://doi.org/10.1016/j.apsusc.2007.04.070
  23. Tarascon, J. M.; McKinnon, W. R.; Coowar, F.; Bowmer, T. N.; Amatucci, G.; Guyomard, D. J. Electrochem. Soc. 1994, 141, 1421. https://doi.org/10.1149/1.2054941
  24. Yoshio, M.; Xia, Y. Y.; Kumada, N.; Ma, S. H. J. Power Sources 2001, 101, 79. https://doi.org/10.1016/S0378-7753(01)00546-8
  25. Gao, Y.; Reimers, J. N.; Dahn, J. R. Phys. Rev. B 1996, 54, 3878. https://doi.org/10.1103/PhysRevB.54.3878
  26. Palacin, M. R.; Chabre, Y.; Dupont, L.; Hervieu, M.; Strobel, P.; Rousse, G.; Masquelier, C.; Anne, M.; Amatucci, G. G.; Tarascon, J. M. J. Electrochem. Soc. 2000, 147, 845. https://doi.org/10.1149/1.1393281
  27. Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley-Interscience: 2005.
  28. Tu, J.; Zhao, X. B.; Zhuang, D. G.; Cao, G. S.; Zhu, T. J.; Tu, J. P. Physica B 2006, 382, 129. https://doi.org/10.1016/j.physb.2006.02.010
  29. Aurbach, D.; Markovsky, B.; Levi, M. D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. J. Power Sources 1999, 81-82, 95. https://doi.org/10.1016/S0378-7753(99)00187-1
  30. Xia, Y. Y.; Yoshio, M. J. Electrochem. Soc. 1996, 143, 825. https://doi.org/10.1149/1.1836544

Cited by

  1. Electrical and structural study of new antimony iodide-doped silver sulfate electrolytes vol.19, pp.8, 2013, https://doi.org/10.1007/s11581-012-0826-5
  2. An Investigation of LiFePO4/Poly(3,4-ethylenedioxythiophene) Composite Cathode Materials for Lithium-Ion Batteries vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2698
  3. Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors vol.2, pp.24, 2010, https://doi.org/10.1039/c4ta01147c
  4. Investigation of Characteristics of CV Properties in LiMn2O4 by Primary Nanoparticle Analysis vol.85, pp.6, 2010, https://doi.org/10.5796/electrochemistry.85.327